Let \(S=\left\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\}\)
Then,
\(S = \left\{\frac{π}{12}\right\}\)
\(S = \left\{\frac{2π}{3}\right\}\)
\(∑_{θ∈S}θ = \frac{π}{2}\)
\(∑_{θ∈S}θ = \frac{3π}{4}\)
The correct answer is (C) : \(∑_{θ∈S}θ = \frac{π}{2}\)
\(S=\left\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\}\)
\(∑^{9}_{m=1} \frac{1}{\cos(θ+(m-1)\frac{π}{6})}\cos(θ+m\frac{π}{6})\)
\(\frac{1}{\sin\left(\frac{\pi}{6}\right)} \sum_{m=1}^{9} \frac{\sin\left[\left(\theta + m\frac{\pi}{6}\right) - \left(\theta + (m-1)\frac{\pi}{6}\right)\right]}{\cos\left(\theta + (m-1)\frac{\pi}{6}\right)\cos\left(\theta + m\frac{\pi}{6}\right)}\)
\(2 \sum_{m=1}^{9} \left[ \tan\left(\theta + m\frac{\pi}{6}\right) - \tan\left(\theta + (m-1)\frac{\pi}{6}\right) \right]\)
Now, \(m=1,\ 2 \left[ \tan\left(\theta + \frac{\pi}{6}\right) - \tan(\theta) \right]\)
\(m=2\ \ \ \ \ 2 \left[ \tan\left(\theta + \frac{2\pi}{6}\right) - \tan\left(\theta + \frac{\pi}{6}\right) \right]\)
.
.
.
\(m = 9\ \ \ \ 2[\tan(θ+\frac{9π}{6})-\tan(θ+8\frac{π}{6})]\)
\(∴ = 2[\tan(θ+\frac{3π}{2})-\tanθ] = \frac{-8}{\sqrt3}\)
\(= -2[\cotθ+\tanθ] = \frac{-8}{\sqrt3}\)
\(= -\frac{2×2}{2\sinθ\cosθ} = \frac{-8}{\sqrt3}\)
\(= \frac{1}{2\sinθ} = \frac{2}{\sqrt3}\)
\(⇒ \sin2θ = \frac{\sqrt3}{2}\)
\(2θ = \frac{π}{3}\),
\(2θ = \frac{2π}{3}\)
\(θ = \frac{π}{6}\)
\(θ = \frac{π}{3}\)
\(∑θi = \frac{π}{6}+\frac{π}{3}\)
\(= \frac{π}{2}\)
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is:
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.
Consider the following equilibrium, $$ \text{CO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)} $$ 0.1 mol of CO along with a catalyst is present in a 2 dm$^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH$_3$OH is formed. The $ K_p $ is ...... x $ 10^7 $ (nearest integer).
Given: $ R = 0.08 \, \text{dm}^3 \, \text{bar} \, \text{K}^{-1} \, \text{mol}^{-1} $
Assume only methanol is formed as the product and the system follows ideal gas behavior.
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |