Let \(S=\left\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\}\)
Then,
\(S = \left\{\frac{π}{12}\right\}\)
\(S = \left\{\frac{2π}{3}\right\}\)
\(∑_{θ∈S}θ = \frac{π}{2}\)
\(∑_{θ∈S}θ = \frac{3π}{4}\)
The correct answer is (C) : \(∑_{θ∈S}θ = \frac{π}{2}\)
\(S=\left\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\}\)
\(∑^{9}_{m=1} \frac{1}{\cos(θ+(m-1)\frac{π}{6})}\cos(θ+m\frac{π}{6})\)
\(\frac{1}{\sin\left(\frac{\pi}{6}\right)} \sum_{m=1}^{9} \frac{\sin\left[\left(\theta + m\frac{\pi}{6}\right) - \left(\theta + (m-1)\frac{\pi}{6}\right)\right]}{\cos\left(\theta + (m-1)\frac{\pi}{6}\right)\cos\left(\theta + m\frac{\pi}{6}\right)}\)
\(2 \sum_{m=1}^{9} \left[ \tan\left(\theta + m\frac{\pi}{6}\right) - \tan\left(\theta + (m-1)\frac{\pi}{6}\right) \right]\)
Now, \(m=1,\ 2 \left[ \tan\left(\theta + \frac{\pi}{6}\right) - \tan(\theta) \right]\)
\(m=2\ \ \ \ \ 2 \left[ \tan\left(\theta + \frac{2\pi}{6}\right) - \tan\left(\theta + \frac{\pi}{6}\right) \right]\)
.
.
.
\(m = 9\ \ \ \ 2[\tan(θ+\frac{9π}{6})-\tan(θ+8\frac{π}{6})]\)
\(∴ = 2[\tan(θ+\frac{3π}{2})-\tanθ] = \frac{-8}{\sqrt3}\)
\(= -2[\cotθ+\tanθ] = \frac{-8}{\sqrt3}\)
\(= -\frac{2×2}{2\sinθ\cosθ} = \frac{-8}{\sqrt3}\)
\(= \frac{1}{2\sinθ} = \frac{2}{\sqrt3}\)
\(⇒ \sin2θ = \frac{\sqrt3}{2}\)
\(2θ = \frac{π}{3}\),
\(2θ = \frac{2π}{3}\)
\(θ = \frac{π}{6}\)
\(θ = \frac{π}{3}\)
\(∑θi = \frac{π}{6}+\frac{π}{3}\)
\(= \frac{π}{2}\)
The principal solutions of the equation \( \cos\theta = \frac{1}{2} \) are _________.
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |