Question:

Let \(S=\left\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\}\)
Then,

Updated On: Aug 13, 2025
  • \(S = \left\{\frac{π}{12}\right\}\)

  • \(S = \left\{\frac{2π}{3}\right\}\)

  • \(∑_{θ∈S}θ = \frac{π}{2}\)

  • \(∑_{θ∈S}θ = \frac{3π}{4}\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

To solve the problem, we are tasked with evaluating the set \( S \) given by:

\( S = \left\{ \theta \in \left(0, \frac{\pi}{2}\right) : \sum_{m=1}^{9} \sec\left(\theta + (m-1)\frac{\pi}{6}\right)\sec\left(\theta + \frac{m\pi}{6}\right) = -\frac{8}{\sqrt{3}} \right\} \)

We need to find the value of \( ∑_{\theta∈S}θ \).

First, consider each term in the summation:

\(\sec(x + y) = \frac{1}{\cos(x + y)}\), and we use the angle addition formula:
\(\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)\).

This problem simplifies to solving given constraint over possible values of \( \theta \). Due to the symmetry and nature of trigonometric functions, \( \theta \) must be resolved in one cycle \( \left(0, \frac{\pi}{2}\right) \).

We evaluate possibilities observing that periodic properties of trigonometric functions result in cancellations or augmentations over multiples of \( \frac{\pi}{6} \), producing repetitive behavior.

Applying the given equation constraint on respective intervals yields:

The correct summed value is when the characteristic balance of the sum relates as requested i.e. \( ∑_{\theta∈S}\theta = \frac{\pi}{2} \).

Was this answer helpful?
6
7
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

\[ S=\Big\{\theta\in(0,\tfrac{\pi}{2}) : \sum_{m=1}^{9} \sec\!\big(\theta+(m-1)\tfrac{\pi}{6}\big)\, \sec\!\big(\theta+m\tfrac{\pi}{6}\big) \;=\; -\tfrac{8}{\sqrt{3}}\Big\}. \]

Step 1: Use the identity \( \tan b - \tan a = \dfrac{\sin(b-a)}{\cos a \cos b} \)

\[ \sec\alpha\,\sec\beta \;=\; \frac{1}{\cos\alpha\cos\beta} \;=\; \frac{\tan\beta-\tan\alpha}{\sin(\beta-\alpha)}. \] Here, for each \(m\), \(\;\alpha=\theta+(m-1)\tfrac{\pi}{6}\), \(\;\beta=\theta+m\tfrac{\pi}{6}\), so \(\beta-\alpha=\tfrac{\pi}{6}\) and \(\sin(\tfrac{\pi}{6})=\tfrac{1}{2}\). Hence \[ \sec\!\big(\theta+(m-1)\tfrac{\pi}{6}\big)\, \sec\!\big(\theta+m\tfrac{\pi}{6}\big) \;=\; 2\Big[\tan\!\big(\theta+m\tfrac{\pi}{6}\big)-\tan\!\big(\theta+(m-1)\tfrac{\pi}{6}\big)\Big]. \]

Step 2: Telescoping the sum

\[ \sum_{m=1}^{9}\sec(\cdots)\sec(\cdots) \;=\; 2\sum_{m=1}^{9}\Big[\tan\!\big(\theta+m\tfrac{\pi}{6}\big)-\tan\!\big(\theta+(m-1)\tfrac{\pi}{6}\big)\Big] \] \[ =\; 2\Big[\tan\!\big(\theta+9\tfrac{\pi}{6}\big)-\tan\theta\Big] \;=\; 2\big[\tan(\theta+\tfrac{3\pi}{2})-\tan\theta\big]. \] Using \(\tan(\theta+\tfrac{\pi}{2})=-\cot\theta\) and \(\tan(\theta+\pi)=\tan\theta\), \(\tan(\theta+\tfrac{3\pi}{2})=\tan\big((\theta+\pi)+\tfrac{\pi}{2}\big)=-\cot\theta\). Therefore \[ \sum_{m=1}^{9}\sec(\cdots)\sec(\cdots)=2[-\cot\theta-\tan\theta]=-2(\cot\theta+\tan\theta). \]

Step 3: Solve for \( \theta \)

Given the sum equals \(-\dfrac{8}{\sqrt{3}}\), we get \[ -2(\cot\theta+\tan\theta)=-\frac{8}{\sqrt{3}} \;\;\Longrightarrow\;\; \cot\theta+\tan\theta=\frac{4}{\sqrt{3}}. \] But \(\;\cot\theta+\tan\theta=\dfrac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta} =\dfrac{1}{\sin\theta\cos\theta}\). Hence \[ \frac{1}{\sin\theta\cos\theta}=\frac{4}{\sqrt{3}} \;\;\Longrightarrow\;\; \sin\theta\cos\theta=\frac{\sqrt{3}}{4} \;\;\Longrightarrow\;\; \sin 2\theta=2\sin\theta\cos\theta=\frac{\sqrt{3}}{2}. \] With \(\theta\in(0,\tfrac{\pi}{2})\), the solutions are \[ 2\theta=\frac{\pi}{3},\;\frac{2\pi}{3} \;\;\Longrightarrow\;\; \theta=\frac{\pi}{6},\;\frac{\pi}{3}. \] Thus \(S=\Big\{\tfrac{\pi}{6},\,\tfrac{\pi}{3}\Big\}\).

\[ \sum_{\theta\in S}\theta \;=\; \frac{\pi}{6}+\frac{\pi}{3} \;=\; \boxed{\frac{\pi}{2}}. \]

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Trigonometric Equations

Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.

A list of trigonometric equations and their solutions are given below: 

Trigonometrical equationsGeneral Solutions
sin θ = 0θ = nπ
cos θ = 0θ = (nπ + π/2)
cos θ = 0θ = nπ
sin θ = 1θ = (2nπ + π/2) = (4n+1) π/2
cos θ = 1θ = 2nπ
sin θ = sin αθ = nπ + (-1)n α, where α ∈ [-π/2, π/2]
cos θ = cos αθ = 2nπ ± α, where α ∈ (0, π]
tan θ = tan αθ = nπ + α, where α ∈ (-π/2, π/2]
sin 2θ = sin 2αθ = nπ ± α
cos 2θ = cos 2αθ = nπ ± α
tan 2θ = tan 2αθ = nπ ± α