Let \(S=\left\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\}\)
Then,
\(S = \left\{\frac{π}{12}\right\}\)
\(S = \left\{\frac{2π}{3}\right\}\)
\(∑_{θ∈S}θ = \frac{π}{2}\)
\(∑_{θ∈S}θ = \frac{3π}{4}\)
The correct answer is (C) : \(∑_{θ∈S}θ = \frac{π}{2}\)
\(S=\left\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\}\)
\(∑^{9}_{m=1} \frac{1}{\cos(θ+(m-1)\frac{π}{6})}\cos(θ+m\frac{π}{6})\)
\(\frac{1}{\sin\left(\frac{\pi}{6}\right)} \sum_{m=1}^{9} \frac{\sin\left[\left(\theta + m\frac{\pi}{6}\right) - \left(\theta + (m-1)\frac{\pi}{6}\right)\right]}{\cos\left(\theta + (m-1)\frac{\pi}{6}\right)\cos\left(\theta + m\frac{\pi}{6}\right)}\)
\(2 \sum_{m=1}^{9} \left[ \tan\left(\theta + m\frac{\pi}{6}\right) - \tan\left(\theta + (m-1)\frac{\pi}{6}\right) \right]\)
Now, \(m=1,\ 2 \left[ \tan\left(\theta + \frac{\pi}{6}\right) - \tan(\theta) \right]\)
\(m=2\ \ \ \ \ 2 \left[ \tan\left(\theta + \frac{2\pi}{6}\right) - \tan\left(\theta + \frac{\pi}{6}\right) \right]\)
.
.
.
\(m = 9\ \ \ \ 2[\tan(θ+\frac{9π}{6})-\tan(θ+8\frac{π}{6})]\)
\(∴ = 2[\tan(θ+\frac{3π}{2})-\tanθ] = \frac{-8}{\sqrt3}\)
\(= -2[\cotθ+\tanθ] = \frac{-8}{\sqrt3}\)
\(= -\frac{2×2}{2\sinθ\cosθ} = \frac{-8}{\sqrt3}\)
\(= \frac{1}{2\sinθ} = \frac{2}{\sqrt3}\)
\(⇒ \sin2θ = \frac{\sqrt3}{2}\)
\(2θ = \frac{π}{3}\),
\(2θ = \frac{2π}{3}\)
\(θ = \frac{π}{6}\)
\(θ = \frac{π}{3}\)
\(∑θi = \frac{π}{6}+\frac{π}{3}\)
\(= \frac{π}{2}\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |