Let \(S=\left\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\}\)
Then,
\(S = \left\{\frac{π}{12}\right\}\)
\(S = \left\{\frac{2π}{3}\right\}\)
\(∑_{θ∈S}θ = \frac{π}{2}\)
\(∑_{θ∈S}θ = \frac{3π}{4}\)
To solve the problem, we are tasked with evaluating the set \( S \) given by:
\( S = \left\{ \theta \in \left(0, \frac{\pi}{2}\right) : \sum_{m=1}^{9} \sec\left(\theta + (m-1)\frac{\pi}{6}\right)\sec\left(\theta + \frac{m\pi}{6}\right) = -\frac{8}{\sqrt{3}} \right\} \)
We need to find the value of \( ∑_{\theta∈S}θ \).
First, consider each term in the summation:
\(\sec(x + y) = \frac{1}{\cos(x + y)}\), and we use the angle addition formula:
\(\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)\).
This problem simplifies to solving given constraint over possible values of \( \theta \). Due to the symmetry and nature of trigonometric functions, \( \theta \) must be resolved in one cycle \( \left(0, \frac{\pi}{2}\right) \).
We evaluate possibilities observing that periodic properties of trigonometric functions result in cancellations or augmentations over multiples of \( \frac{\pi}{6} \), producing repetitive behavior.
Applying the given equation constraint on respective intervals yields:
The correct summed value is when the characteristic balance of the sum relates as requested i.e. \( ∑_{\theta∈S}\theta = \frac{\pi}{2} \).
\[ S=\Big\{\theta\in(0,\tfrac{\pi}{2}) : \sum_{m=1}^{9} \sec\!\big(\theta+(m-1)\tfrac{\pi}{6}\big)\, \sec\!\big(\theta+m\tfrac{\pi}{6}\big) \;=\; -\tfrac{8}{\sqrt{3}}\Big\}. \]
\[ \sec\alpha\,\sec\beta \;=\; \frac{1}{\cos\alpha\cos\beta} \;=\; \frac{\tan\beta-\tan\alpha}{\sin(\beta-\alpha)}. \] Here, for each \(m\), \(\;\alpha=\theta+(m-1)\tfrac{\pi}{6}\), \(\;\beta=\theta+m\tfrac{\pi}{6}\), so \(\beta-\alpha=\tfrac{\pi}{6}\) and \(\sin(\tfrac{\pi}{6})=\tfrac{1}{2}\). Hence \[ \sec\!\big(\theta+(m-1)\tfrac{\pi}{6}\big)\, \sec\!\big(\theta+m\tfrac{\pi}{6}\big) \;=\; 2\Big[\tan\!\big(\theta+m\tfrac{\pi}{6}\big)-\tan\!\big(\theta+(m-1)\tfrac{\pi}{6}\big)\Big]. \]
\[ \sum_{m=1}^{9}\sec(\cdots)\sec(\cdots) \;=\; 2\sum_{m=1}^{9}\Big[\tan\!\big(\theta+m\tfrac{\pi}{6}\big)-\tan\!\big(\theta+(m-1)\tfrac{\pi}{6}\big)\Big] \] \[ =\; 2\Big[\tan\!\big(\theta+9\tfrac{\pi}{6}\big)-\tan\theta\Big] \;=\; 2\big[\tan(\theta+\tfrac{3\pi}{2})-\tan\theta\big]. \] Using \(\tan(\theta+\tfrac{\pi}{2})=-\cot\theta\) and \(\tan(\theta+\pi)=\tan\theta\), \(\tan(\theta+\tfrac{3\pi}{2})=\tan\big((\theta+\pi)+\tfrac{\pi}{2}\big)=-\cot\theta\). Therefore \[ \sum_{m=1}^{9}\sec(\cdots)\sec(\cdots)=2[-\cot\theta-\tan\theta]=-2(\cot\theta+\tan\theta). \]
Given the sum equals \(-\dfrac{8}{\sqrt{3}}\), we get \[ -2(\cot\theta+\tan\theta)=-\frac{8}{\sqrt{3}} \;\;\Longrightarrow\;\; \cot\theta+\tan\theta=\frac{4}{\sqrt{3}}. \] But \(\;\cot\theta+\tan\theta=\dfrac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta} =\dfrac{1}{\sin\theta\cos\theta}\). Hence \[ \frac{1}{\sin\theta\cos\theta}=\frac{4}{\sqrt{3}} \;\;\Longrightarrow\;\; \sin\theta\cos\theta=\frac{\sqrt{3}}{4} \;\;\Longrightarrow\;\; \sin 2\theta=2\sin\theta\cos\theta=\frac{\sqrt{3}}{2}. \] With \(\theta\in(0,\tfrac{\pi}{2})\), the solutions are \[ 2\theta=\frac{\pi}{3},\;\frac{2\pi}{3} \;\;\Longrightarrow\;\; \theta=\frac{\pi}{6},\;\frac{\pi}{3}. \] Thus \(S=\Big\{\tfrac{\pi}{6},\,\tfrac{\pi}{3}\Big\}\).
\[ \sum_{\theta\in S}\theta \;=\; \frac{\pi}{6}+\frac{\pi}{3} \;=\; \boxed{\frac{\pi}{2}}. \]
The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is:
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
| Trigonometrical equations | General Solutions |
| sin θ = 0 | θ = nπ |
| cos θ = 0 | θ = (nπ + π/2) |
| cos θ = 0 | θ = nπ |
| sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
| cos θ = 1 | θ = 2nπ |
| sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
| cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
| tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
| sin 2θ = sin 2α | θ = nπ ± α |
| cos 2θ = cos 2α | θ = nπ ± α |
| tan 2θ = tan 2α | θ = nπ ± α |