To solve for the distances from the center of the wire's cross-section at which the magnetic field is half of its maximum value, we first consider the magnetic field behavior for different sections of the wire.
Inside the Wire \((r \leq a)\):
The magnetic field \(B\) at any point inside the wire is given by:
\( B = \frac{\mu_0 I r}{2\pi a^2} \)
where \( \mu_0 \) is the permeability of free space, \( I \) is the total current, \( r \) is the radial distance from the center, and \( a \) is the wire's radius.
The maximum magnetic field inside the wire occurs at the surface, \( r = a \):
\( B_{\text{max, inside}} = \frac{\mu_0 I a}{2\pi a^2} = \frac{\mu_0 I}{2\pi a} \)
Half of this maximum value is:
\( \frac{B_{\text{max, inside}}}{2} = \frac{\mu_0 I}{4 \pi a} \)
Setting the general expression for \( B \) equal to half the maximum:
\( \frac{\mu_0 I r}{2\pi a^2} = \frac{\mu_0 I}{4 \pi a} \)
Simplifying, we find:
\( r = \frac{a}{2} \)
Outside the Wire \((r > a)\):
The magnetic field \(B\) at any point outside the wire is given by:
\( B = \frac{\mu_0 I}{2\pi r} \)
The maximum magnetic field outside is on the surface \(r = a\):
\( B_{\text{max, outside}} = \frac{\mu_0 I}{2\pi a} \)
Half of this maximum is:
\( \frac{B_{\text{max, outside}}}{2} = \frac{\mu_0 I}{4 \pi a} \)
Equating the general expression for \( B \) outside to half the maximum:
\( \frac{\mu_0 I}{2\pi r} = \frac{\mu_0 I}{4\pi a} \)
Simplifying, we find:
\( r = 2a \)
Therefore, the distances from the center where the magnetic field is half its maximum are \(\frac{a}{2}\) inside the wire and \(2a\) outside the wire.
A coil of area A and N turns is rotating with angular velocity \( \omega\) in a uniform magnetic field \(\vec{B}\) about an axis perpendicular to \( \vec{B}\) Magnetic flux \(\varphi \text{ and induced emf } \varepsilon \text{ across it, at an instant when } \vec{B} \text{ is parallel to the plane of the coil, are:}\)
Conductor wire ABCDE with each arm 10 cm in length is placed in magnetic field of $\frac{1}{\sqrt{2}}$ Tesla, perpendicular to its plane. When conductor is pulled towards right with constant velocity of $10 \mathrm{~cm} / \mathrm{s}$, induced emf between points A and E is _______ mV.} 
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Given below are two statements: one is labelled as Assertion \(A\) and the other as Reason \(R\):
Assertion \(A\): A sound wave has higher speed in solids than in gases.
Reason \(R\): Gases have higher value of Bulk modulus than solids.
In the experiment for measurement of viscosity \( \eta \) of a given liquid with a ball having radius \( R \), consider following statements:
A. Graph between terminal velocity \( V \) and \( R \) will be a parabola.
B. The terminal velocities of different diameter balls are constant for a given liquid.
C. Measurement of terminal velocity is dependent on the temperature.
D. This experiment can be utilized to assess the density of a given liquid.
E. If balls are dropped with some initial speed, the value of \( \eta \) will change.