To find the dimensions of the expression \( \frac{B}{\mu_0} \), where \( B \) is the magnetic field and \( \mu_0 \) is the permeability of free space, we must first consider their fundamental dimensional formulas:
The magnetic field \( B \) has the dimensions given by: \([B] = \text{MT}^{-2}A^{-1}\)
The permeability of free space \( \mu_0 \) has the dimensions: \([\mu_0] = \text{MLT}^{-2}A^{-2}\)
Now, calculate \(\frac{B}{\mu_0}\):
\(\frac{B}{\mu_0} = \frac{\text{MT}^{-2}A^{-1}}{\text{MLT}^{-2}A^{-2}}\)
This simplifies to:
\(\frac{B}{\mu_0} = \frac{\text{M}^{1-1}\text{T}^{-2+2}\text{A}^{-1+2}}{\text{L}^{1}}\)
Resulting dimensions are: \(\text{L}^{-1}\text{A}^{1}\)
Therefore, the dimensions of \(\frac{B}{\mu_0}\) are \(\text{L}^{-1}A\).
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: