To find the dimensions of the expression \( \frac{B}{\mu_0} \), where \( B \) is the magnetic field and \( \mu_0 \) is the permeability of free space, we must first consider their fundamental dimensional formulas:
The magnetic field \( B \) has the dimensions given by: \([B] = \text{MT}^{-2}A^{-1}\)
The permeability of free space \( \mu_0 \) has the dimensions: \([\mu_0] = \text{MLT}^{-2}A^{-2}\)
Now, calculate \(\frac{B}{\mu_0}\):
\(\frac{B}{\mu_0} = \frac{\text{MT}^{-2}A^{-1}}{\text{MLT}^{-2}A^{-2}}\)
This simplifies to:
\(\frac{B}{\mu_0} = \frac{\text{M}^{1-1}\text{T}^{-2+2}\text{A}^{-1+2}}{\text{L}^{1}}\)
Resulting dimensions are: \(\text{L}^{-1}\text{A}^{1}\)
Therefore, the dimensions of \(\frac{B}{\mu_0}\) are \(\text{L}^{-1}A\).
Magnetic field (B): The dimensional formula of \( B \) is \[ [B] = [M^1 L^0 T^{-2} A^{-1}]. \]
Permeability of free space (μ₀): From the relation \[ B = \mu_0 H, \] where \( H \) (magnetic field intensity) has the dimension \[ [H] = [A L^{-1}], \] we get \[ [\mu_0] = \frac{[B]}{[H]} = \frac{[M T^{-2} A^{-1}]}{[A L^{-1}]} = [M L T^{-2} A^{-2}]. \]
Now, find dimensions of \( \dfrac{B}{\mu_0} \): \[ \frac{[B]}{[\mu_0]} = \frac{[M T^{-2} A^{-1}]}{[M L T^{-2} A^{-2}]} = [L^{-1} A^1]. \]
✅ Option 2: \( L^{-1} A \)

A coil of area A and N turns is rotating with angular velocity \( \omega\) in a uniform magnetic field \(\vec{B}\) about an axis perpendicular to \( \vec{B}\) Magnetic flux \(\varphi \text{ and induced emf } \varepsilon \text{ across it, at an instant when } \vec{B} \text{ is parallel to the plane of the coil, are:}\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: