To determine the correct statements regarding self-inductance, we need to analyze each given statement:
From the analysis above, statements A, C, D, and E are correct. Therefore, the correct answer is:
A, C, D, E only
Explanation:
To determine the correct statements regarding self-inductance, let's analyze each:
The correct option is A, C, D, E only because these statements accurately describe the characteristics and effects of self-inductance.
A 1 m long metal rod AB completes the circuit as shown in figure. The area of circuit is perpendicular to the magnetic field of 0.10 T. If the resistance of the total circuit is 2 \(\Omega\) then the force needed to move the rod towards right with constant speed (v) of 1.5 m/s is _____ N.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
