To determine the modulus and amplitude of the complex number \( z = 2 - i \left( 2 \tan \frac{5\pi}{8} \right) \), we proceed as follows:
The given complex number is in the form \( z = a + bi \), where \( a = 2 \) and \( b = -2 \tan \frac{5\pi}{8} \).
To find the modulus \( r \) of \( z \), use the formula:
\(r = \sqrt{a^2 + b^2}\)
Substitute \( a \) and \( b \):
\(r = \sqrt{2^2 + \left(-2 \tan \frac{5\pi}{8}\right)^2}\)
\(r = \sqrt{4 + 4 \tan^2 \frac{5\pi}{8}}\)
\(r = 2 \sqrt{1 + \tan^2 \frac{5\pi}{8}}\)
Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \):
\(r = 2 \sec \frac{5\pi}{8}\)
Next, calculate the amplitude \(\theta\) using the formula \(\theta = \tan^{-1}\left(\frac{b}{a}\right)\):
\(\theta = \tan^{-1}\left(\frac{-2 \tan \frac{5\pi}{8}}{2}\right) = \tan^{-1}\left(-\tan \frac{5\pi}{8}\right)\)
\(\theta = \pi - \frac{5\pi}{8} = \frac{3\pi}{8}\) because the complex number is in the second quadrant.
Thus, the pair \((r, \theta)\) is \(\left(2 \sec \frac{3\pi}{8}, \frac{3\pi}{8}\right)\).
The correct answer is therefore \(\left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right)\).
Let \( z = 2 - i \left( 2 \tan \frac{5\pi}{8} \right) = x + iy \).
Step 1. Calculating \( r \), the modulus of \( z \):**
\(r = \sqrt{x^2 + y^2}\)
\(r = \sqrt{(2)^2 + \left( 2 \tan \frac{5\pi}{8} \right)^2}\)
\(= 2 \sec \frac{5\pi}{8} = 2 \sec \left( \pi - \frac{3\pi}{8} \right) = 2 \sec \frac{3\pi}{8}\)
Step 2. Calculating \( \theta \), the amplitude of \( z \):
\(\theta = \tan^{-1} \left( \frac{-2 \tan \frac{5\pi}{8}}{2} \right)\)
\(= \tan^{-1} \left( -\tan \frac{5\pi}{8} \right) = \frac{3\pi}{8}\)
Therefore, \( (r, \theta) = \left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right) \).
The Correct Answer is:\(\left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right)\).
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.