To determine the modulus and amplitude of the complex number \( z = 2 - i \left( 2 \tan \frac{5\pi}{8} \right) \), we proceed as follows:
The given complex number is in the form \( z = a + bi \), where \( a = 2 \) and \( b = -2 \tan \frac{5\pi}{8} \).
To find the modulus \( r \) of \( z \), use the formula:
\(r = \sqrt{a^2 + b^2}\)
Substitute \( a \) and \( b \):
\(r = \sqrt{2^2 + \left(-2 \tan \frac{5\pi}{8}\right)^2}\)
\(r = \sqrt{4 + 4 \tan^2 \frac{5\pi}{8}}\)
\(r = 2 \sqrt{1 + \tan^2 \frac{5\pi}{8}}\)
Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \):
\(r = 2 \sec \frac{5\pi}{8}\)
Next, calculate the amplitude \(\theta\) using the formula \(\theta = \tan^{-1}\left(\frac{b}{a}\right)\):
\(\theta = \tan^{-1}\left(\frac{-2 \tan \frac{5\pi}{8}}{2}\right) = \tan^{-1}\left(-\tan \frac{5\pi}{8}\right)\)
\(\theta = \pi - \frac{5\pi}{8} = \frac{3\pi}{8}\) because the complex number is in the second quadrant.
Thus, the pair \((r, \theta)\) is \(\left(2 \sec \frac{3\pi}{8}, \frac{3\pi}{8}\right)\).
The correct answer is therefore \(\left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right)\).
Let \( z = 2 - i \left( 2 \tan \frac{5\pi}{8} \right) = x + iy \).
Step 1. Calculating \( r \), the modulus of \( z \):**
\(r = \sqrt{x^2 + y^2}\)
\(r = \sqrt{(2)^2 + \left( 2 \tan \frac{5\pi}{8} \right)^2}\)
\(= 2 \sec \frac{5\pi}{8} = 2 \sec \left( \pi - \frac{3\pi}{8} \right) = 2 \sec \frac{3\pi}{8}\)
Step 2. Calculating \( \theta \), the amplitude of \( z \):
\(\theta = \tan^{-1} \left( \frac{-2 \tan \frac{5\pi}{8}}{2} \right)\)
\(= \tan^{-1} \left( -\tan \frac{5\pi}{8} \right) = \frac{3\pi}{8}\)
Therefore, \( (r, \theta) = \left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right) \).
The Correct Answer is:\(\left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right)\).
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 