Question:

Let \( r \) and \( \theta \) respectively be the modulus and amplitude of the complex number \( z = 2 - i \left( 2 \tan \frac{5\pi}{8} \right) \), then \( (r, \theta) \) is equal to

Updated On: May 2, 2025
  • \( \left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right) \)
  • \( \left( 2 \sec \frac{3\pi}{8}, \frac{5\pi}{8} \right) \)
  • \( \left( 2 \sec \frac{5\pi}{8}, \frac{3\pi}{8} \right) \)
  • \( \left( 2 \sec \frac{11\pi}{8}, \frac{11\pi}{8} \right) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let \( z = 2 - i \left( 2 \tan \frac{5\pi}{8} \right) = x + iy \).

Step 1. Calculating \( r \), the modulus of \( z \):**  
 \(r = \sqrt{x^2 + y^2}\)
 \(r = \sqrt{(2)^2 + \left( 2 \tan \frac{5\pi}{8} \right)^2}\)
 \(= 2 \sec \frac{5\pi}{8} = 2 \sec \left( \pi - \frac{3\pi}{8} \right) = 2 \sec \frac{3\pi}{8}\)
 

Step 2. Calculating \( \theta \), the amplitude of \( z \):
  \(\theta = \tan^{-1} \left( \frac{-2 \tan \frac{5\pi}{8}}{2} \right)\)
  \(= \tan^{-1} \left( -\tan \frac{5\pi}{8} \right) = \frac{3\pi}{8}\)
Therefore, \( (r, \theta) = \left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right) \).

The Correct Answer is:\(\left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right)\).

Was this answer helpful?
0
1