Let \( z = 2 - i \left( 2 \tan \frac{5\pi}{8} \right) = x + iy \).
Step 1. Calculating \( r \), the modulus of \( z \):**
\(r = \sqrt{x^2 + y^2}\)
\(r = \sqrt{(2)^2 + \left( 2 \tan \frac{5\pi}{8} \right)^2}\)
\(= 2 \sec \frac{5\pi}{8} = 2 \sec \left( \pi - \frac{3\pi}{8} \right) = 2 \sec \frac{3\pi}{8}\)
Step 2. Calculating \( \theta \), the amplitude of \( z \):
\(\theta = \tan^{-1} \left( \frac{-2 \tan \frac{5\pi}{8}}{2} \right)\)
\(= \tan^{-1} \left( -\tan \frac{5\pi}{8} \right) = \frac{3\pi}{8}\)
Therefore, \( (r, \theta) = \left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right) \).
The Correct Answer is:\(\left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right)\).
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then: