Let \( z = 2 - i \left( 2 \tan \frac{5\pi}{8} \right) = x + iy \).
Step 1. Calculating \( r \), the modulus of \( z \):**
\(r = \sqrt{x^2 + y^2}\)
\(r = \sqrt{(2)^2 + \left( 2 \tan \frac{5\pi}{8} \right)^2}\)
\(= 2 \sec \frac{5\pi}{8} = 2 \sec \left( \pi - \frac{3\pi}{8} \right) = 2 \sec \frac{3\pi}{8}\)
Step 2. Calculating \( \theta \), the amplitude of \( z \):
\(\theta = \tan^{-1} \left( \frac{-2 \tan \frac{5\pi}{8}}{2} \right)\)
\(= \tan^{-1} \left( -\tan \frac{5\pi}{8} \right) = \frac{3\pi}{8}\)
Therefore, \( (r, \theta) = \left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right) \).
The Correct Answer is:\(\left( 2 \sec \frac{3\pi}{8}, \frac{3\pi}{8} \right)\).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: