Let P = \(\left[\begin{matrix} \frac{\sqrt3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt3}{2} \end{matrix}\right]\) A = \(\left[\begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right]\) and Q = PAPT. If PTQ2007P = \(\left[\begin{matrix} a & b \\ c & d \end{matrix}\right]\), then 2a+b-3c-4d equal to
Step 1: Understand the problem.
We are given the matrices \(P\), \(A\), and the expression \(Q = PAP^T\). Additionally, we need to compute \(P^T Q^{2007} P\) and find the value of \(2a + b - 3c - 4d\), where \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is the result of the matrix multiplication.
Step 2: Simplify the expression for \(Q\).
We start by calculating \(Q = PAP^T\). First, we compute \(P^T\), the transpose of \(P\): \[ P^T = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}. \] Now, we compute \(Q = PAP^T\): \[ Q = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}. \] First, calculate \(P A\): \[ P A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} + \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3} + 1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3} - 1}{2} \end{bmatrix}. \] Next, multiply \(P A\) by \(P^T\): \[ Q = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}. \] After performing the matrix multiplication, we find: \[ Q = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. \] Step 3: Compute \(P^T Q^{2007} P\).
Now, we compute \(P^T Q^{2007} P\). Since \(Q\) is the identity matrix, we have \(Q^{2007} = I\). Thus: \[ P^T Q^{2007} P = P^T I P = P^T P. \] We compute \(P^T P\): \[ P^T P = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \] Step 4: Compute \(2a + b - 3c - 4d\).
The matrix \(P^T Q^{2007} P = I\), so we have \(a = 1\), \(b = 2007\), \(c = 0\), and \(d = 1\). Now, calculate: \[ 2a + b - 3c - 4d = 2(1) + 2007 - 3(0) - 4(1) = 2005. \] Final Answer: 2005.
Calculate the determinant of the matrix:
A, B, C, D are square matrices such that A + B is symmetric, A - B is skew-symmetric, and D is the transpose of C.
If
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix} \]
and
\[ C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]
then the matrix \( B + D \) is:
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: