Let P = \(\left[\begin{matrix} \frac{\sqrt3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt3}{2} \end{matrix}\right]\) A = \(\left[\begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right]\) and Q = PAPT. If PTQ2007P = \(\left[\begin{matrix} a & b \\ c & d \end{matrix}\right]\), then 2a+b-3c-4d equal to
Step 1: Understand the problem.
We are given the matrices \(P\), \(A\), and the expression \(Q = PAP^T\). Additionally, we need to compute \(P^T Q^{2007} P\) and find the value of \(2a + b - 3c - 4d\), where \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is the result of the matrix multiplication.
Step 2: Simplify the expression for \(Q\).
We start by calculating \(Q = PAP^T\). First, we compute \(P^T\), the transpose of \(P\): \[ P^T = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}. \] Now, we compute \(Q = PAP^T\): \[ Q = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}. \] First, calculate \(P A\): \[ P A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} + \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3} + 1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3} - 1}{2} \end{bmatrix}. \] Next, multiply \(P A\) by \(P^T\): \[ Q = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}. \] After performing the matrix multiplication, we find: \[ Q = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. \] Step 3: Compute \(P^T Q^{2007} P\).
Now, we compute \(P^T Q^{2007} P\). Since \(Q\) is the identity matrix, we have \(Q^{2007} = I\). Thus: \[ P^T Q^{2007} P = P^T I P = P^T P. \] We compute \(P^T P\): \[ P^T P = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \] Step 4: Compute \(2a + b - 3c - 4d\).
The matrix \(P^T Q^{2007} P = I\), so we have \(a = 1\), \(b = 2007\), \(c = 0\), and \(d = 1\). Now, calculate: \[ 2a + b - 3c - 4d = 2(1) + 2007 - 3(0) - 4(1) = 2005. \] Final Answer: 2005.
Calculate the determinant of the matrix:

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
