Step 1: Find the center \( C \) of the circle.
The given circle equation is:
\[
x^2 + y^2 - 2x - 4y - 11 = 0.
\]
Rewrite it in standard form by completing the square:
\[
(x^2 - 2x) + (y^2 - 4y) = 11,
\]
\[
(x^2 - 2x + 1) + (y^2 - 4y + 4) = 11 + 1 + 4,
\]
\[
(x - 1)^2 + (y - 2)^2 = 16.
\]
Thus, the center \( C \) is at \( (1, 2) \), and the radius \( r = 4 \).
Step 2: Substitute \( C \) into the ellipse equation to find \( p \).
The ellipse equation is:
\[
3x^2 + py^2 = 4.
\]
Substitute \( C = (1, 2) \):
\[
3(1)^2 + p(2)^2 = 4 \quad \Rightarrow \quad 3 + 4p = 4 \quad \Rightarrow \quad p = \frac{1}{4}.
\]
So, the ellipse becomes:
\[
3x^2 + \frac{1}{4}y^2 = 4 \quad \Rightarrow \quad \frac{x^2}{\frac{4}{3}} + \frac{y^2}{16} = 1.
\]
Step 3: Identify the semi-major and semi-minor axes.
The standard form of the ellipse is:
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
\]
where \( a^2 = \frac{4}{3} \) and \( b^2 = 16 \).
Since \( b>a \), the major axis is along the \( y \)-axis.
The focal distance \( c \) is given by:
\[
c^2 = b^2 - a^2 = 16 - \frac{4}{3} = \frac{44}{3} \quad \Rightarrow \quad c = \frac{2\sqrt{33}}{3}.
\]
Step 4: Calculate the focal distances \( f_1 \) and \( f_2 \) for point \( C \).
For an ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) with \( b>a \), the focal distances of a point \( (x_0, y_0) \) are:
\[
f_1 = b + \frac{c}{b} y_0, \quad f_2 = b - \frac{c}{b} y_0.
\]
Substitute \( C = (1, 2) \), \( b = 4 \), and \( c = \frac{2\sqrt{33}}{3} \):
\[
f_1 = 4 + \frac{\frac{2\sqrt{33}}{3}}{4} \cdot 2 = 4 + \frac{\sqrt{33}}{3},
\]
\[
f_2 = 4 - \frac{\frac{2\sqrt{33}}{3}}{4} \cdot 2 = 4 - \frac{\sqrt{33}}{3}.
\]
Now, compute \( f_1 f_2 \):
\[
f_1 f_2 = \left(4 + \frac{\sqrt{33}}{3}\right)\left(4 - \frac{\sqrt{33}}{3}\right) = 16 - \left(\frac{\sqrt{33}}{3}\right)^2 = 16 - \frac{33}{9} = 16 - \frac{11}{3} = \frac{37}{3}.
\]
Step 5: Compute \( 6f_1 f_2 - r \).
\[
6f_1 f_2 - r = 6 \cdot \frac{37}{3} - 4 = 74 - 4 = 70.
\]