Question:

If $ \theta $ is the angle subtended by a latus rectum at the center of the hyperbola having eccentricity $$ \frac{2}{\sqrt{7} - \sqrt{3}}, $$ then find $ \sin \theta $.

Show Hint

Relate eccentricity and latus rectum properties to angles using conic formulas.
Updated On: Jun 4, 2025
  • \( \frac{1}{2} \tan \frac{\theta}{2} \)
  • \( 2 \cos \frac{\theta}{2} \)
  • \( \frac{1}{\sin \frac{\theta}{2} + \cos \frac{\theta}{2}} \)
  • \( 1 - \cos \frac{\theta}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Use properties of hyperbola and latus rectum. Use formulas connecting eccentricity \( e \), latus rectum, and angle subtended. Derive expression for \( \sin \theta \).
Was this answer helpful?
0
0

Top Questions on Conic sections

View More Questions

AP EAPCET Notification