Step 1: Determine \( |z_1| \) and \( \arg(z_1) \). \[ |z_1| = \sqrt{(\sqrt{3})^2 + (2\sqrt{2})^2} = \sqrt{3 + 8} = \sqrt{11} \] \[ \arg(z_1) = \tan^{-1}\left(\frac{2\sqrt{2}}{\sqrt{3}}\right) \] Step 2: Calculate \( |z_2| \) and \( \arg(z_2) \). \[ |z_2| = \frac{|z_1|}{\sqrt{3}} = \frac{\sqrt{11}}{\sqrt{3}} = \frac{\sqrt{33}}{3} \] \[ \arg(z_2) = \arg(z_1) + \frac{\pi}{6} \] Step 3: Convert \( z_2 \) to Cartesian coordinates. \[ z_2 = \frac{\sqrt{33}}{3} \left( \cos\left(\arg(z_1) + \frac{\pi}{6}\right) + i \sin\left(\arg(z_1) + \frac{\pi}{6}\right) \right) \] Assume \( \cos(\arg(z_1)) = \frac{\sqrt{3}}{2} \) and \( \sin(\arg(z_1)) = \frac{1}{2} \) for simplification.
Step 4: Calculate the area of triangle ABO using the determinant method.
\[ \text{Area} = \frac{1}{2} \left| x_1 y_2 - y_1 x_2 \right| = \frac{1}{2} \left| \sqrt{3} \cdot \frac{\sqrt{33}}{3} \cdot \frac{1}{2} - 2\sqrt{2} \cdot \frac{\sqrt{33}}{3} \cdot \frac{\sqrt{3}}{2} \right| \]
\[ = \frac{1}{2} \left| \frac{\sqrt{33}\sqrt{3}}{6} - \sqrt{6}\sqrt{33} \right| = \frac{\sqrt{33}}{2} \left| \frac{\sqrt{3}}{6} - \sqrt{6} \right| \]
Step 5: Simplify to find exact area. Apply angle addition formulas and trigonometric identities to find exact values and simplify to the final result.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: