Let a and b be two non-collinear vectors of unit modulus. If u = a − (a · b)b and v = a × b, then ∥v∥ = ?
Step 1: We are given: \[ \mathbf{u} = \mathbf{a} - (\mathbf{a} \cdot \mathbf{b})\mathbf{b} \quad \text{and} \quad \mathbf{v} = \mathbf{a} \times \mathbf{b} \] Where: - \( \mathbf{a} \) and \( \mathbf{b} \) are unit vectors (i.e., \( |\mathbf{a}| = 1 \) and \( |\mathbf{b}| = 1 \)).
Step 1: Compute \( \lVert \mathbf{u} \rVert \)
Using the identity for vector projection, \[ \mathbf{u} = \mathbf{a} - \text{Proj}_{\mathbf{b}} \mathbf{a} \] The projection formula is: \[ \text{Proj}_{\mathbf{b}} \mathbf{a} = (\mathbf{a} \cdot \mathbf{b}) \mathbf{b} \] Since \( \mathbf{u} \) is the component of \( \mathbf{a} \) perpendicular to \( \mathbf{b} \), we can compute its magnitude: \[ \lVert \mathbf{u} \rVert = \sqrt{|\mathbf{a}|^2 - (\mathbf{a} \cdot \mathbf{b})^2} \] Since \( |\mathbf{a}| = 1 \), \[ \lVert \mathbf{u} \rVert = \sqrt{1 - (\cos \theta)^2} = \sqrt{\sin^2 \theta} = |\sin \theta| \]
Step 2: Compute \( \lVert \mathbf{v} \rVert \)
Recall that \( \mathbf{v} = \mathbf{a} \times \mathbf{b} \). By the cross product formula: \[ \lVert \mathbf{v} \rVert = |\mathbf{a}| |\mathbf{b}| \sin \theta = 1 \cdot 1 \cdot |\sin \theta| = |\sin \theta| \] Thus, \[ \lVert \mathbf{v} \rVert = \lVert \mathbf{u} \rVert \]
Step 3: Relating \( \lVert \mathbf{v} \rVert \) to Other Terms
Since \( \mathbf{v} = \mathbf{a} \times \mathbf{b} \), and the cross product is perpendicular to both vectors, \[ \lVert \mathbf{v} \rVert = \lVert \mathbf{u} \rVert + \lVert \mathbf{u} \cdot \mathbf{v} \rVert \]
Step 4: Final Answer
\[ \boxed{\lVert \mathbf{u} \rVert + \lVert \mathbf{u} \cdot \mathbf{v} \rVert} \]
Final Answer: (A) \( \lVert \mathbf{u} \rVert + \lVert \mathbf{u} \cdot \mathbf{v} \rVert \)
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).