Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
We are tasked with analyzing the determinant of a given matrix and determining the maximum and minimum values of the resulting function \( f(x) \). Let us proceed step by step:
1. The Given Matrix:
The matrix is:
\(
\begin{vmatrix}
1 + \sin^2x & \cos^2x & 4\sin4x \\
\sin^2x & 1 + \cos^2x & 4\sin4x \\
\sin^2x & \cos^2x & 1 + 4\sin4x
\end{vmatrix}, \quad x \in \mathbb{R}
\)
2. Row Operations:
To simplify the determinant, perform the following row operations:
\( R_2 \to R_2 - R_1 \) and \( R_3 \to R_3 - R_1 \):
\(
\begin{vmatrix}
1 + \sin^2x & \cos^2x & 4\sin4x \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{vmatrix}
\)
3. Expanding the Determinant:
Expand the determinant about the first row:
\(
f(x) = (1 + \sin^2x)
\begin{vmatrix}
1 & 0 \\
0 & 1
\end{vmatrix}
- \cos^2x
\begin{vmatrix}
-1 & 0 \\
-1 & 1
\end{vmatrix}
+ 4\sin4x
\begin{vmatrix}
-1 & 1 \\
-1 & 0
\end{vmatrix}
\)
Compute each minor determinant:
\(
\begin{vmatrix}
1 & 0 \\
0 & 1
\end{vmatrix} = 1, \quad
\begin{vmatrix}
-1 & 0 \\
-1 & 1
\end{vmatrix} = (-1)(1) - (0)(-1) = -1, \quad
\begin{vmatrix}
-1 & 1 \\
-1 & 0
\end{vmatrix} = (-1)(0) - (1)(-1) = 1
\)
Substitute these values back into the expansion:
\(
f(x) = (1 + \sin^2x)(1) - \cos^2x(-1) + 4\sin4x(1)
\)
Simplify:
\(
f(x) = 1 + \sin^2x + \cos^2x + 4\sin4x
\)
Using the Pythagorean identity \( \sin^2x + \cos^2x = 1 \):
\(
f(x) = 1 + 1 + 4\sin4x = 2 + 4\sin4x
\)
4. Finding Maximum and Minimum Values:
The function \( f(x) = 2 + 4\sin4x \) depends on \( \sin4x \), which oscillates between \(-1\) and \(1\):
\(
\text{Maximum value of } f(x): \quad f(x) = 2 + 4(1) = 6
\)
\(
\text{Minimum value of } f(x): \quad f(x) = 2 + 4(-1) = -2
\)
Thus:
\( M = 6 \quad \text{and} \quad m = -2 \)
5. Computing \( M^4 - m^4 \):
Using the values of \( M \) and \( m \):
\(
M^4 - m^4 = 6^4 - (-2)^4
\)
Compute each term:
\(
6^4 = 1296, \quad (-2)^4 = 16
\)
Subtract:
\(
M^4 - m^4 = 1296 - 16 = 1280
\)
Final Answer:
The value of \( M^4 - m^4 \) is \( \boxed{1280} \).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
