Let \( ABC \) be a triangle formed by the lines \( 7x - 6y + 3 = 0 \), \( x + 2y - 31 = 0 \), and \( 9x - 2y - 19 = 0 \).
Let the point \( (h, k) \) be the image of the centroid of \( \triangle ABC \) in the line \( 3x + 6y - 53 = 0 \). Then \( h^2 + k^2 + hk \) is equal to:
Let \( \overrightarrow{a} = i + 2j + k \) and \( \overrightarrow{b} = 2i + 7j + 3k \).
Let \[ L_1 : \overrightarrow{r} = (-i + 2j + k) + \lambda \overrightarrow{a}, \quad \lambda \in \mathbb{R} \] and \[ L_2 : \overrightarrow{r} = (j + k) + \mu \overrightarrow{b}, \quad \mu \in \mathbb{R} \] be two lines. If the line \( L_3 \) passes through the point of intersection of \( L_1 \) and \( L_2 \), and is parallel to \( \overrightarrow{a} + \overrightarrow{b} \), then \( L_3 \) passes through the point:
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.