Step 1: Find shortest distance between lines
Given lines:
\[ L_1: \vec{r}_1 = (1,2,3) + t(2,3,4) \]
\[ L_2: \vec{r}_2 = (\lambda,4,5) + s(3,4,5) \]
Shortest distance formula:
\[ d = \frac{|(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|} \]
where \(\vec{a}_1 = (1,2,3)\), \(\vec{a}_2 = (\lambda,4,5)\), \(\vec{b}_1 = (2,3,4)\), and \(\vec{b}_2 = (3,4,5)\).
Calculate \(\vec{b}_1 \times \vec{b}_2\):
\[ (-1, 2, -1) \]
Thus:
\[ d = \frac{|(\lambda-1, 2, 2) \cdot (-1, 2, -1)|}{\sqrt{6}} = \frac{|1 - \lambda + 4 - 2|}{\sqrt{6}} = \frac{|3 - \lambda|}{\sqrt{6}} = \frac{1}{\sqrt{6}} \]
Solving:
\[ |3 - \lambda| = 1 \Rightarrow \lambda_1 = 2, \lambda_2 = 4 \]
Step 2: Find the circle through (0,0), (2,4), (4,2)
Using the general circle equation \(x^2 + y^2 + 2gx + 2fy + c = 0\):
\[
\begin{cases}
c = 0 \\
4 + 16 + 4g + 8f = 0 \\
16 + 4 + 8g + 4f = 0
\end{cases}
\]
Solving gives \(g = -\frac{5}{2}\), \(f = -\frac{5}{2}\), and \(c = 0\).
Radius:
\[ r = \sqrt{g^2 + f^2 - c} = \sqrt{\frac{25}{4} + \frac{25}{4}} = \frac{5\sqrt{2}}{2} \]