We are asked to evaluate the following integral:
\[
I = \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx
\]
First, notice that we can express \( \tan x \) in terms of \( \sin x \) and \( \cos x \):
\[
\tan x = \frac{\sin x}{\cos x}
\]
Thus, the integral becomes:
\[
I = \int \frac{\sqrt{\frac{\sin x}{\cos x}}}{\sin x \cos x} \, dx = \int \frac{\sqrt{\sin x}}{\sqrt{\cos x}} \cdot \frac{1}{\sin x \cos x} \, dx
\]
Simplifying the expression, we get:
\[
I = \int \frac{1}{\cos^2 x} \, dx
\]
This is a standard integral, which simplifies to:
\[
I = 2 \tan x + C
\]
Thus, the solution to the integral is:
\[
\boxed{2 \sec^2 x}
\]