Let $ f(x) + 2f\left( \frac{1}{x} \right) = x^2 + 5 $ and $ 2g(x) - 3g\left( \frac{1}{2} \right) = x, \, x>0. \, \text{If} \, \alpha = \int_{1}^{2} f(x) \, dx, \, \beta = \int_{1}^{2} g(x) \, dx, \text{ then the value of } 9\alpha + \beta \text{ is:}$
Step 1: The given equation is:
\[ f(x) + 2f\left( \frac{1}{x} \right) = x^2 + 5 \]
Step 2: Substitute and simplify:
\[ f\left( \frac{1}{x} \right) + 2f(x) = \frac{1}{x^2} + 5 \] Solving for \( f(x) \): \[ f(x) = \frac{2}{3x^2} - \frac{x^2}{3} + \frac{5}{3} \]
Step 3: Find the integral for \( \alpha \):
\[ \alpha = \int_1^2 \left( \frac{2}{3x^2} - \frac{x^2}{3} + \frac{5}{3} \right) dx \] Simplifying the integral: \[ \left( \frac{2}{3x^2} - \frac{x^2}{3} + \frac{5}{3} \right) = -\frac{1}{3} + \frac{8}{9} + \frac{10}{3} + \frac{2}{3} + \frac{1}{9} - \frac{5}{3} \] Thus: \[ \alpha = \frac{2}{3} - \frac{7}{9} = \frac{11}{9} \]
Step 4: Equation for \( g(x) \):
\[ 2g(x) - 3g\left( \frac{1}{2} \right) = x \] For \( g\left( \frac{1}{2} \right) \), we have: \[ g\left( \frac{1}{2} \right) = -\frac{1}{2} \] Solving for \( g(x) \): \[ g(x) = \frac{x}{2} - \frac{3}{4} \]
Step 5: Find the integral for \( \beta \):
\[ \beta = \int_1^2 \left( \frac{x}{2} - \frac{3}{4} \right) dx \] Simplifying the integral: \[ \left( \frac{x^2}{4} - \frac{3x}{4} \right) = 1 - \frac{3}{4} - \frac{1}{4} + \frac{3}{4} = 0 \]
Step 6: Final calculation:
\[ 9\alpha + \beta = 11 \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.