We are given:
\[
\int \frac{\tan^2 \sqrt{x}}{\sqrt{x}} \, dx
\]
Let us use substitution. Put:
\[
t = \sqrt{x} \Rightarrow x = t^2 \Rightarrow dx = 2t \, dt
\]
Now substitute in the integral:
\[
\int \frac{\tan^2 t}{t} \cdot 2t \, dt = \int 2 \tan^2 t \, dt
\]
We know the identity:
\[
\tan^2 t = \sec^2 t - 1
\Rightarrow \int 2 \tan^2 t \, dt = \int 2(\sec^2 t - 1) \, dt
= 2 \int \sec^2 t \, dt - 2 \int dt
= 2 \tan t - 2t + C
\]
Now revert back to the original variable \(x\) using \(t = \sqrt{x}\):
\[
f(x) = 2 \tan \sqrt{x} - 2\sqrt{x} + C
= 2(\tan \sqrt{x} - \sqrt{x}) + C
\]
\[
\boxed{f(x) = 2(\tan \sqrt{x} - \sqrt{x}) + C}
\]