The given integral is:
\[\int \frac{\tan^2 \sqrt{x}}{\sqrt{x}} \, dx\]
To solve this, we'll use substitution. Set \( u = \sqrt{x} \), then \( x = u^2 \), and \( dx = 2u \, du \). The integral becomes:
\[\int \frac{\tan^2 u}{u} \cdot 2u \, du = 2 \int \tan^2 u \, du\]
We know the identity:
\[\tan^2 u = \sec^2 u - 1\]
Using this identity, the integral becomes:
\[2 \int (\sec^2 u - 1) \, du = 2 \left(\int \sec^2 u \, du - \int 1 \, du\right)\]
The integral of \(\sec^2 u\) is \(\tan u\), and the integral of \(1\) is \(u\). So,
\[= 2 (\tan u - u) + C\]
Substitute back \( u = \sqrt{x} \):
\[= 2 \left(\tan \sqrt{x} - \sqrt{x}\right) + C\]
Therefore, the solution to the given integral is:
\[2\left( \tan \sqrt{x} - \sqrt{x} \right) + C\]