Question:

\[ \int \frac{\tan^2 \sqrt{x}}{\sqrt{x}} \, dx \text{ is equal to:} \]

Show Hint

If the integrand contains a composite function like \(\tan^2(\sqrt{x})\), use substitution \(t = \sqrt{x}\) to simplify. Then apply trigonometric identities to integrate easily.
  • \(\sec \sqrt{x} + C\)
  • \(2\sqrt{x} \tan x - x + C\)
  • \(2\left( \tan \sqrt{x} - \sqrt{x} \right) + C\)
  • \(2 \tan \sqrt{x} - x + C\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

The given integral is:
\[\int \frac{\tan^2 \sqrt{x}}{\sqrt{x}} \, dx\]
To solve this, we'll use substitution. Set \( u = \sqrt{x} \), then \( x = u^2 \), and \( dx = 2u \, du \). The integral becomes:
\[\int \frac{\tan^2 u}{u} \cdot 2u \, du = 2 \int \tan^2 u \, du\]
We know the identity:
\[\tan^2 u = \sec^2 u - 1\]
Using this identity, the integral becomes:
\[2 \int (\sec^2 u - 1) \, du = 2 \left(\int \sec^2 u \, du - \int 1 \, du\right)\]
The integral of \(\sec^2 u\) is \(\tan u\), and the integral of \(1\) is \(u\). So,
\[= 2 (\tan u - u) + C\]
Substitute back \( u = \sqrt{x} \):
\[= 2 \left(\tan \sqrt{x} - \sqrt{x}\right) + C\]
Therefore, the solution to the given integral is:
\[2\left( \tan \sqrt{x} - \sqrt{x} \right) + C\]
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

We are given: \[ \int \frac{\tan^2 \sqrt{x}}{\sqrt{x}} \, dx \] Let us use substitution. Put: \[ t = \sqrt{x} \Rightarrow x = t^2 \Rightarrow dx = 2t \, dt \] Now substitute in the integral: \[ \int \frac{\tan^2 t}{t} \cdot 2t \, dt = \int 2 \tan^2 t \, dt \] We know the identity: \[ \tan^2 t = \sec^2 t - 1 \Rightarrow \int 2 \tan^2 t \, dt = \int 2(\sec^2 t - 1) \, dt = 2 \int \sec^2 t \, dt - 2 \int dt = 2 \tan t - 2t + C \] Now revert back to the original variable \(x\) using \(t = \sqrt{x}\): \[ f(x) = 2 \tan \sqrt{x} - 2\sqrt{x} + C = 2(\tan \sqrt{x} - \sqrt{x}) + C \] \[ \boxed{f(x) = 2(\tan \sqrt{x} - \sqrt{x}) + C} \]
Was this answer helpful?
0
0