Let:
\[
S = \left\lfloor \sqrt{1} \right\rfloor + \left\lfloor \sqrt{2} \right\rfloor + \left\lfloor \sqrt{3} \right\rfloor + \cdots + \left\lfloor \sqrt{120} \right\rfloor
\]
We will group terms by the value of \( \left\lfloor \sqrt{x} \right\rfloor \):
\[
\left\lfloor \sqrt{1} \right\rfloor = 1, \quad \left\lfloor \sqrt{2} \right\rfloor = 1, \quad \left\lfloor \sqrt{3} \right\rfloor = 1, \quad \left\lfloor \sqrt{4} \right\rfloor = 2, \quad \left\lfloor \sqrt{5} \right\rfloor = 2, \dots
\]
Thus:
\[
S = 1 \times 3 + 2 \times 5 + 3 \times 7 + \cdots + 10 \times 21
\]
We can calculate this sum as follows:
\[
S = \sum_{r=1}^{10} r(2r + 1)
\]
The sum becomes:
\[
S = 1 \times 3 + 2 \times 5 + 3 \times 7 + \dots + 10 \times 21
\]
Solving the summation gives:
\[
S = 770 + 55 = 825
\]