Let m be the mean and σ be the standard deviation of the distribution
| xi | 0 | 1 | 2 | 3 | 4 | 5 |
| fi | k+2 | 2k | k2-1 | k2-1 | k2+1 | k-3 |
where ∑fi = 62. if [x] denotes the greatest integer ≤ x, then [μ2 + σ2] is equal
Given $\sum f_i = 62$. $(k+2) + 2k + (k^2-1) + (k^2-1) + (k^2+1) + (k-3) = 62$ $3k^2 + 4k - 2 = 62$ $3k^2 + 4k - 64 = 0$ Solving for $k$, we get $k = 4$ (choosing the positive integer solution).
Frequencies are: 6, 8, 15, 15, 17, 1.
Mean $\mu = \frac{\sum x_i f_i}{\sum f_i} = \frac{0(6) + 1(8) + 2(15) + 3(15) + 4(17) + 5(1)}{62} = \frac{156}{62} \approx 2.516$.
Variance $\sigma^2 = \frac{\sum f_i (x_i - \mu)^2}{\sum f_i} \approx 1.733$. $\mu^2 + \sigma^2 \approx (2.516)^2 + 1.733 \approx 6.33 + 1.733 \approx 8.063$. $[\mu^2 + \sigma^2] = [8.063] = 8$.
Answer: 8.
Find the mean deviation of the following data: 
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: