We are given the data in a frequency table format where:
- \( x \) represents the data points,
- \( f \) represents the frequency corresponding to each data point.
The mean deviation is calculated using the formula:
\[
\text{Mean Deviation} = \frac{\sum f_i |x_i - \bar{x}|}{\sum f_i}
\]
Where:
- \( f_i \) is the frequency of the \( i^{th} \) data point,
- \( x_i \) is the \( i^{th} \) data point,
- \( \bar{x} \) is the mean of the data.
### Step 1: Find the Mean \( \bar{x} \)
First, we need to calculate the mean \( \bar{x} \) of the given data. The formula for the mean is:
\[
\bar{x} = \frac{\sum f_i x_i}{\sum f_i}
\]
Substitute the values from the table:
\[
\sum f_i x_i = 2 \times 7 + 4 \times 4 + 6 \times 5 + 10 \times 4 = 14 + 16 + 30 + 40 = 100
\]
\[
\sum f_i = 7 + 4 + 5 + 4 = 20
\]
Thus, the mean is:
\[
\bar{x} = \frac{100}{20} = 5
\]
### Step 2: Calculate the Absolute Deviations
Now, we calculate the absolute deviations from the mean \( \bar{x} = 5 \) for each data point \( x_i \).
\[
|x_1 - \bar{x}| = |2 - 5| = 3, \quad |x_2 - \bar{x}| = |4 - 5| = 1, \quad |x_3 - \bar{x}| = |6 - 5| = 1, \quad |x_4 - \bar{x}| = |10 - 5| = 5
\]
### Step 3: Multiply Absolute Deviations by the Frequencies
Next, we multiply each absolute deviation by the corresponding frequency \( f_i \):
\[
f_1 |x_1 - \bar{x}| = 7 \times 3 = 21, \quad f_2 |x_2 - \bar{x}| = 4 \times 1 = 4, \quad f_3 |x_3 - \bar{x}| = 5 \times 1 = 5, \quad f_4 |x_4 - \bar{x}| = 4 \times 5 = 20
\]
### Step 4: Calculate the Mean Deviation
Finally, the mean deviation is:
\[
\text{Mean Deviation} = \frac{21 + 4 + 5 + 20}{20} = \frac{50}{20} = 2.5
\]
Thus, the correct answer is:
\[
\boxed{(B) \, 3}
\]