Step 1: Finding the variance (\( \sigma^2 \))
The variance is calculated using the formula:
\[
\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]
where \( \bar{x} \) is the mean of the data and \( x_i \) are the individual data points.
For the given data \( 2, 3, 5, 8, 12 \), first, calculate the mean \( \bar{x} \):
\[
\bar{x} = \frac{2 + 3 + 5 + 8 + 12}{5} = \frac{30}{5} = 6
\]
Now, calculate the variance:
\[
\sigma^2 = \frac{1}{5} \left[ (2 - 6)^2 + (3 - 6)^2 + (5 - 6)^2 + (8 - 6)^2 + (12 - 6)^2 \right]
\]
\[
\sigma^2 = \frac{1}{5} \left[ 16 + 9 + 1 + 4 + 36 \right] = \frac{66}{5} = 13.2
\]
Step 2: Finding the median and calculating the mean deviation from the median (M)
To find the median, arrange the data in ascending order: \( 2, 3, 5, 8, 12 \). Since there are 5 numbers, the median is the third number:
\[
\text{Median} = 5
\]
The mean deviation from the median is calculated as:
\[
M = \frac{1}{n} \sum_{i=1}^{n} |x_i - \text{Median}|
\]
\[
M = \frac{1}{5} \left[ |2 - 5| + |3 - 5| + |5 - 5| + |8 - 5| + |12 - 5| \right]
\]
\[
M = \frac{1}{5} \left[ 3 + 2 + 0 + 3 + 7 \right] = \frac{15}{5} = 3
\]
Step 3: Calculate \( \sigma^2 - M \)
Now, calculate \( \sigma^2 - M \):
\[
\sigma^2 - M = 13.2 - 3 = 10.2
\]
Step 4: Final Answer
The value of \( \sigma^2 - M \) is:
10.2