Let
\(A = \{z \in \mathbb{C} : |\frac{z+1}{z-1}| < 1\}\)
and
\(B = \{z \in \mathbb{C} : \text{arg}(\frac{z-1}{z+1}) = \frac{2\pi}{3}\}\)
Then \(A∩B\) is :
A portion of a circle centred at \((0, −\frac{1}{\sqrt3}) \) that lies in the second and third quadrants only
A portion of a circle centred at \((0, −\frac{1}{\sqrt3})\) that lies in the second only
A portion of a circle of radius \(\frac{2}{\sqrt3}\) that lies in the third quadrant only
The correct answer is (B) : A portion of a circle centred at \((0, −\frac{1}{\sqrt3})\) that lies in the second only
\(|\frac{z+1}{z−1}|<1⇒|z+1|<|z−1|⇒Re(z)<0\)
and \(arg(\frac{z−1}{z+1})=\frac{2π}{3}\)
is a part of circle as shown

Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
A Complex Number is written in the form
a + ib
where,
The Complex Number consists of a symbol “i” which satisfies the condition i^2 = −1. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.