Given:
\[ (\vec{a} + 2\vec{b}) \times \vec{c} = 3(\vec{c} \times \vec{a}) \]
This implies:
\[ 2\vec{b} \times \vec{c} = 0 \quad (\text{since cross product is zero}) \]
Also:
\[ \vec{c} = \lambda (\vec{a} + 2\vec{b}) = \lambda (8\hat{i} - 14\hat{j} + 30\hat{k}) \]
Given:
\[ \vec{a} \cdot \vec{c} = 130 \]
Substitute values:
\[ 8\lambda + 42\lambda + 210\lambda = 130 \quad \implies \quad \lambda = \frac{1}{2} \]
Therefore:
\[ \vec{c} = 4\hat{i} - 7\hat{j} + 15\hat{k} \]
Now:
\[ \vec{b} \cdot \vec{c} = 8 + 7 + 15 = 30 \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: