Given:
\[ (\vec{a} + 2\vec{b}) \times \vec{c} = 3(\vec{c} \times \vec{a}) \]
This implies:
\[ 2\vec{b} \times \vec{c} = 0 \quad (\text{since cross product is zero}) \]
Also:
\[ \vec{c} = \lambda (\vec{a} + 2\vec{b}) = \lambda (8\hat{i} - 14\hat{j} + 30\hat{k}) \]
Given:
\[ \vec{a} \cdot \vec{c} = 130 \]
Substitute values:
\[ 8\lambda + 42\lambda + 210\lambda = 130 \quad \implies \quad \lambda = \frac{1}{2} \]
Therefore:
\[ \vec{c} = 4\hat{i} - 7\hat{j} + 15\hat{k} \]
Now:
\[ \vec{b} \cdot \vec{c} = 8 + 7 + 15 = 30 \]
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.