Step 1: Rewrite the vector equation
Given \((\vec{a} + 2\vec{b}) \times \vec{c} = 3(\vec{c} \times \vec{a})\). Since \(\vec{c} \times \vec{a} = -(\vec{a} \times \vec{c})\), we have:
\[
(\vec{a} + 2\vec{b}) \times \vec{c} \;=\; -3(\vec{a} \times \vec{c})
\;\;\Longrightarrow\;\;
\vec{a}\times\vec{c} + 2\,\vec{b}\times\vec{c} \;=\; -3\,\vec{a}\times\vec{c}
\;\;\Longrightarrow\;\;
\vec{b}\times\vec{c} \;=\; -2\,\vec{a}\times\vec{c}.
\]
Step 2: Cross both sides with \(\vec{c}\)
Use \((\vec{u}\times\vec{v})\times\vec{w}=\vec{v}(\vec{u}\cdot\vec{w})-\vec{u}(\vec{v}\cdot\vec{w})\) with \(\vec{v}=\vec{w}=\vec{c}\):
\[
(\vec{b}\times\vec{c})\times\vec{c}
= \vec{c}(\vec{b}\cdot\vec{c}) - \vec{b}\,\lVert\vec{c}\rVert^2,
\qquad
(\vec{a}\times\vec{c})\times\vec{c}
= \vec{c}(\vec{a}\cdot\vec{c}) - \vec{a}\,\lVert\vec{c}\rVert^2.
\]
Thus
\[
\vec{c}(\vec{b}\cdot\vec{c}) - \vec{b}\,\lVert\vec{c}\rVert^2
= -2\big[\vec{c}(\vec{a}\cdot\vec{c}) - \vec{a}\,\lVert\vec{c}\rVert^2\big].
\]
Rearrange the \(\vec{c}\)-terms and the others:
\[
\vec{c}\big(\vec{b}\cdot\vec{c} + 2\,\vec{a}\cdot\vec{c}\big)
= \lVert\vec{c}\rVert^2(\vec{b}+2\vec{a}).
\]
Therefore \(\vec{c}\) is parallel to \(\vec{b}+2\vec{a}\). Hence for some scalar \(k\),
\[
\vec{c} = k(\vec{b}+2\vec{a}).
\]
Step 3: Use the given dot product \(\vec{a}\cdot\vec{c}=130\) to find \(k\)
Compute \(\vec{b}+2\vec{a}\): with \(\vec{a}=\langle 1,-3,7\rangle\) and \(\vec{b}=\langle 2,-1,1\rangle\),
\[
\vec{b}+2\vec{a} = \langle 2, -1, 1\rangle + \langle 2, -6, 14\rangle = \langle 4, -7, 15\rangle.
\]
Then
\[
\vec{a}\cdot(\vec{b}+2\vec{a}) = \langle 1,-3,7\rangle\cdot\langle 4,-7,15\rangle = 4 + 21 + 105 = 130.
\]
Since \(\vec{c}=k(\vec{b}+2\vec{a})\) and \(\vec{a}\cdot\vec{c}=130\), we get
\[
130 = \vec{a}\cdot\vec{c} = k\,\vec{a}\cdot(\vec{b}+2\vec{a}) = k\cdot 130 \;\;\Longrightarrow\;\; k=1.
\]
Thus \(\vec{c}=\langle 4,-7,15\rangle\).
Step 4: Compute \(\vec{b}\cdot\vec{c}\)
\[
\vec{b}\cdot\vec{c} = \langle 2,-1,1\rangle\cdot\langle 4,-7,15\rangle = 8 + 7 + 15 = 30.
\]
Final answer
30