We are given:
\begin{itemize}
\item \( \hat{a}, \hat{b}, \hat{c} \) are unit vectors.
\item \( \hat{a} \cdot \hat{b} = 0 \)
\item \( \hat{a} \cdot \hat{c} = 0 \)
\item Angle between \( \hat{b} \) and \( \hat{c} \) is \( \frac{\pi}{6} \)
\end{itemize}
Step 1: Geometrical Meaning
Since \( \hat{a} \) is perpendicular to both \( \hat{b} \) and \( \hat{c} \),
it must be perpendicular to the plane containing \( \hat{b} \) and \( \hat{c} \).
This implies:
\[
\hat{a} \parallel (\hat{b} \times \hat{c})
\Rightarrow \hat{a} = \lambda (\hat{b} \times \hat{c})
\quad \text{for some scalar } \lambda
\]
Step 2: Use Magnitudes
Take magnitude on both sides:
\[
|\hat{a}| = |\lambda| \cdot |\hat{b} \times \hat{c}|
\]
Given \( \hat{a} \) is a unit vector:
\[
1 = |\lambda| \cdot |\hat{b}| \cdot |\hat{c}| \cdot \sin\theta
\]
Since \( \hat{b} \) and \( \hat{c} \) are unit vectors and \( \theta = \frac{\pi}{6} \), we have:
\[
1 = |\lambda| \cdot 1 \cdot 1 \cdot \sin\left(\frac{\pi}{6}\right)
= |\lambda| \cdot \frac{1}{2}
\Rightarrow |\lambda| = 2
\]
Step 3: Final Answer
\[
\lambda = \pm 2 \quad \Rightarrow \hat{a} = \pm 2 (\hat{b} \times \hat{c})
\]
Hence Proved. \quad \(\boxed{\hat{a} = \pm 2 (\hat{b} \times \hat{c})}\)