Step 1: Given information.
Mass of the body, \( m = 4 \, \text{kg} \)
Initial position, \( P(3, 4) \)
Final position, \( Q(6, 10) \)
Force, \( \mathbf{F} = (2\hat{i} + 3\hat{j}) \, \text{N} \)
Time of motion, \( t = 4 \, \text{s} \).
Step 2: Find the displacement vector.
\[
\overrightarrow{PQ} = (6 - 3)\hat{i} + (10 - 4)\hat{j} = 3\hat{i} + 6\hat{j}
\]
So, displacement \( \mathbf{s} = 3\hat{i} + 6\hat{j} \).
Step 3: Calculate the work done by the force.
\[
W = \mathbf{F} \cdot \mathbf{s} = (2\hat{i} + 3\hat{j}) \cdot (3\hat{i} + 6\hat{j}) = 2(3) + 3(6) = 6 + 18 = 24 \, \text{J}.
\]
Step 4: Calculate average power.
\[
P_{\text{avg}} = \frac{W}{t} = \frac{24}{4} = 6 \, \text{W}.
\]
Step 5: Calculate acceleration.
The force and mass are related by Newton’s second law:
\[
\mathbf{F} = m\mathbf{a} \Rightarrow \mathbf{a} = \frac{\mathbf{F}}{m} = \frac{1}{4}(2\hat{i} + 3\hat{j}) = 0.5\hat{i} + 0.75\hat{j}.
\]
Step 6: Find initial velocity.
We know displacement \( \mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2 \).
\[
3\hat{i} + 6\hat{j} = \mathbf{u}(4) + \frac{1}{2}(0.5\hat{i} + 0.75\hat{j})(16)
\]
\[
3\hat{i} + 6\hat{j} = 4\mathbf{u} + (4\hat{i} + 6\hat{j})
\]
\[
4\mathbf{u} = (3 - 4)\hat{i} + (6 - 6)\hat{j} = -\hat{i}.
\]
\[
\mathbf{u} = -\frac{1}{4}\hat{i}.
\]
Step 7: Find velocity at \( t = 4 \, \text{s} \).
\[
\mathbf{v} = \mathbf{u} + \mathbf{a}t = \left(-\frac{1}{4}\hat{i}\right) + (0.5\hat{i} + 0.75\hat{j}) \times 4
\]
\[
\mathbf{v} = -0.25\hat{i} + (2\hat{i} + 3\hat{j}) = 1.75\hat{i} + 3\hat{j}.
\]
Step 8: Instantaneous power at the end of 4 s.
\[
P_{\text{inst}} = \mathbf{F} \cdot \mathbf{v} = (2\hat{i} + 3\hat{j}) \cdot (1.75\hat{i} + 3\hat{j}) = 2(1.75) + 3(3) = 3.5 + 9 = 12.5 \, \text{W}.
\]
Step 9: Ratio of average power to instantaneous power.
\[
P_{\text{avg}} : P_{\text{inst}} = 6 : 12.5 = 12 : 25 = 6 : 13.
\]
Final Answer:
\[
\boxed{6 : 13}
\]