Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
The area of a parallelogram formed by vectors \( \vec{a} \) and \( \vec{b} \) is given by: \[ \text{Area} = |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta \] We are given: \[ |\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12 \] Recall that: \[ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta \Rightarrow 12 = 10 \cdot 2 \cdot \cos\theta = 20 \cos\theta \Rightarrow \cos\theta = \frac{12}{20} = \frac{3}{5} \] Now, compute \( \sin\theta \) using the identity: \[ \sin^2\theta = 1 - \cos^2\theta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow \sin\theta = \frac{4}{5} \] Now compute the area: \[ \text{Area} = 10 \cdot 2 \cdot \frac{4}{5} = 20 \cdot \frac{4}{5} = \boxed{16} \]
\[ \boxed{16 \text{ square units}} \]
Four students of class XII are given a problem to solve independently. Their respective chances of solving the problem are: \[ \frac{1}{2},\quad \frac{1}{3},\quad \frac{2}{3},\quad \frac{1}{5} \] Find the probability that at most one of them will solve the problem.
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]