When working with matrix multiplication and powers of matrices, look for pat terns and simplifications, especially for special types of matrices like upper or lower triangular matrices. Remember the formula for the sum of the first n integers: n(n+1)
Let: \[ C = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}, \quad D = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}. \]
Compute: \[ DC = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I. \] Thus, \(D\) is the inverse of \(C\).
Now, define: \[ B = CAD. \] The general expression for \(B^n\) is: \[ B^n = (CAD)(CAD)(CAD) \cdots (CAD) \, (\text{n-times}). \] Using the properties of matrices: \[ B^n = CA^nD \quad \text{... (1)}. \]
Compute powers of \(A\): \[ A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}. \] \[ A^3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}. \]
Similarly: \[ A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}. \]
Now substitute \(A^n\) into \(B^n\): \[ B^n = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}. \] Simplify: \[ B^n = \begin{bmatrix} 1 & n \\ -1 & -n \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}. \] Expanding: \[ B^n = \begin{bmatrix} n+1 & 2n+2 \\ -n-1 & -2n-1 \end{bmatrix}. \]
Now, compute the sum: \[ \sum_{n=1}^{50} B^n = \begin{bmatrix} \sum_{n=1}^{50} (n+1) & \sum_{n=1}^{50} (2n+2) \\ \sum_{n=1}^{50} (-n-1) & \sum_{n=1}^{50} (-2n-1) \end{bmatrix}. \] Simplifying each term: - \(\sum_{n=1}^{50} (n+1) = 25 + 50 = 75,\) - \(\sum_{n=1}^{50} (2n+2) = 100 + 50 = 150,\) - \(\sum_{n=1}^{50} (-n-1) = -25 - 50 = -75,\) - \(\sum_{n=1}^{50} (-2n-1) = -50 - 50 = -100.\)
The sum of all elements in the resulting matrix is: \[ 75 + 150 - 75 - 100 = 100. \]
Final Answer: The sum of the elements is 100.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 