Given:
\[ \underbrace{\text{adj(adj(adj... (A)))}}_{\text{2024 times}} = |A|^{(n-1)^{2024}} \]
\[ = |A|^{2024} \]
\[ = 2^{2024} \]
Step 1:
\[ 2^{2024} = (2^2)^{1012} = 4^{1012} \] \[ = 4 \times (8)^{674} = 4(9 - 1)^{674} \]
Step 2:
\[ \Rightarrow 2^{2024} \equiv 4 \pmod{9} \]
Step 3:
\[ \Rightarrow 2^{2024} \equiv 9m + 4, \quad m \text{ even} \]
Step 4:
\[ 2^{9m + 4} = 16 \cdot (2^3)^{3m} \equiv 16 \pmod{9} \]
\[ \Rightarrow 2^{2024} \equiv 7 \pmod{9} \]
Final Answer:
\[ \boxed{7} \]
\[ 2^{2024} = (2^2)^{2022} = 4 \cdot (8)^{674} = 4 \cdot (9 - 1)^{674}. \]
Applying modulo 9, we get:
\[ 2^{2024} \equiv 4 \pmod{9}. \]
Thus,
\[ 2^{2024} = 9m + 4, \quad m \text{ is even}. \]
Now, consider \(2^{9m+4}\):
\[ 2^{9m+4} = 16 \cdot (2^3)^{3m} \equiv 16 \pmod{9}. \]
Thus,
\[ = 7. \]
Therefore, the answer is:
\[ 7. \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
