\[ 2^{2024} = (2^2)^{2022} = 4 \cdot (8)^{674} = 4 \cdot (9 - 1)^{674}. \]
Applying modulo 9, we get:
\[ 2^{2024} \equiv 4 \pmod{9}. \]
Thus,
\[ 2^{2024} = 9m + 4, \quad m \text{ is even}. \]
Now, consider \(2^{9m+4}\):
\[ 2^{9m+4} = 16 \cdot (2^3)^{3m} \equiv 16 \pmod{9}. \]
Thus,
\[ = 7. \]
Therefore, the answer is:
\[ 7. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: