The correct option is(A): \((\frac{3^{10}-3}{2})A\)
A3 = A.A2 = A(3A) = 3A2 = 32A
A4 = 33A
Now
A2 + A3 + … + A10
A[31 + 32 + 33 + … + 39]
\((\frac{3^{10}-3}{2})A\)
If the matrix $ A $ is such that $ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \text{ then } A \text{ is equal to} $
If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad A \, \text{adj} \, A = A A^t, \quad \text{then} \, 5a + b \, \text{is equal to}$
If $3A + 4B^{t} = \left( \begin{array}{cc} 7 & -10 \\ 0 & 6 \end{array} \right) $ and $ 2B - 3A^{t} = \left( \begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array} \right) $, then find $ (5B)^{t}$:
Match List-I with List-II.
Choose the correct answer from the options given below :
The numbers or functions that are kept in a matrix are termed the elements or the entries of the matrix.
The matrix acquired by interchanging the rows and columns of the parent matrix is termed the Transpose matrix. The definition of a transpose matrix goes as follows - “A Matrix which is devised by turning all the rows of a given matrix into columns and vice-versa.”