The given function is \( f(x) = 6x^3 - 45ax^2 + 108a^2x + 1 \).
To find the points where the function attains its local maxima and minima, we first find its first derivative: \[ f'(x) = 18x^2 - 90ax + 108a^2 \] Setting \( f'(x) = 0 \) to find critical points: \[ 18x^2 - 90ax + 108a^2 = 0 \] Dividing through by 18: \[ x^2 - 5ax + 6a^2 = 0 \] Solving this quadratic equation using the quadratic formula: \[ x = \frac{-(-5a) \pm \sqrt{(-5a)^2 - 4(1)(6a^2)}}{2(1)} = \frac{5a \pm \sqrt{25a^2 - 24a^2}}{2} = \frac{5a \pm a}{2} \]
Thus, the critical points are: \[ x_1 = 2a \quad \text{and} \quad x_2 = 3a \] We are given that \( x_1x_2 = 54 \), so: \[ 2a \times 3a = 54 \] \[ 6a^2 = 54 \quad \Rightarrow \quad a^2 = 9 \quad \Rightarrow \quad a = 3 \] Now, \( x_1 = 2a = 6 \) and \( x_2 = 3a = 9 \), so: \[ a + x_1 + x_2 = 3 + 6 + 9 = 18 \]
Thus, the correct answer is 18.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: