The given function is \( f(x) = 6x^3 - 45ax^2 + 108a^2x + 1 \).
To find the points where the function attains its local maxima and minima, we first find its first derivative: \[ f'(x) = 18x^2 - 90ax + 108a^2 \] Setting \( f'(x) = 0 \) to find critical points: \[ 18x^2 - 90ax + 108a^2 = 0 \] Dividing through by 18: \[ x^2 - 5ax + 6a^2 = 0 \] Solving this quadratic equation using the quadratic formula: \[ x = \frac{-(-5a) \pm \sqrt{(-5a)^2 - 4(1)(6a^2)}}{2(1)} = \frac{5a \pm \sqrt{25a^2 - 24a^2}}{2} = \frac{5a \pm a}{2} \]
Thus, the critical points are: \[ x_1 = 2a \quad \text{and} \quad x_2 = 3a \] We are given that \( x_1x_2 = 54 \), so: \[ 2a \times 3a = 54 \] \[ 6a^2 = 54 \quad \Rightarrow \quad a^2 = 9 \quad \Rightarrow \quad a = 3 \] Now, \( x_1 = 2a = 6 \) and \( x_2 = 3a = 9 \), so: \[ a + x_1 + x_2 = 3 + 6 + 9 = 18 \]
Thus, the correct answer is 18.
Step 1: Find the first derivative. To find the local maximum and minimum, we first compute the first derivative of \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( 6x^3 - 45ax^2 + 108a^2x + 1 \right) = 18x^2 - 90ax + 108a^2 \] Set \( f'(x) = 0 \) to find the critical points: \[ 18x^2 - 90ax + 108a^2 = 0 \] Divide by 18: \[ x^2 - 5ax + 6a^2 = 0 \] Step 2: Solve the quadratic equation. This is a quadratic equation in \( x \). Using the quadratic formula: \[ x = \frac{-(-5a) \pm \sqrt{(-5a)^2 - 4(1)(6a^2)}}{2(1)} = \frac{5a \pm \sqrt{25a^2 - 24a^2}}{2} = \frac{5a \pm a}{2} \] Thus, the two roots are: \[ x_1 = \frac{5a + a}{2} = 3a \quad \text{and} \quad x_2 = \frac{5a - a}{2} = 2a \] Step 3: Use the given condition \( x_1x_2 = 54 \).We are given that \( x_1x_2 = 54 \), so: \[ (3a)(2a) = 54 \] \[ 6a^2 = 54 \quad \Rightarrow \quad a^2 = 9 \quad \Rightarrow \quad a = 3 \] Step 4: Calculate \( a + x_1 + x_2 \). Now that we know \( a = 3 \), we can find \( x_1 \) and \( x_2 \): \[ x_1 = 3a = 9 \quad \text{and} \quad x_2 = 2a = 6 \] Thus: \[ a + x_1 + x_2 = 3 + 9 + 6 = 18 \] Final Answer: \[ \boxed{18} \]
If the area of the region \[ \{(x, y) : 1 - 2x \le y \le 4 - x^2,\ x \ge 0,\ y \ge 0\} \] is \[ \frac{\alpha}{\beta}, \] \(\alpha, \beta \in \mathbb{N}\), \(\gcd(\alpha, \beta) = 1\), then the value of \[ (\alpha + \beta) \] is :
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
