>
Exams
>
Mathematics
>
Calculus
>
int pi 6 pi 3 frac sqrt cos x sqrt sin x sqrt cos
Question:
\( \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \) is equal to:
Show Hint
For any integral of the form \( \int_a^b \frac{f(x)}{f(x) + f(a+b-x)} dx \), the shortcut answer is always \( \frac{b - a}{2} \).
PSEB XII
Updated On:
Jan 22, 2026
\( \frac{\pi}{4} \)
\( \frac{\pi}{6} \)
\( \frac{\pi}{12} \)
\( \frac{\pi}{2} \)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Step 1: Key Formula or Approach:
Use the definite integral property: \( \int_a^b f(x) dx = \int_a^b f(a + b - x) dx \).
Step 2: Detailed Explanation:
Let \( I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \) ... (i)
Here \( a = \pi/6 \) and \( b = \pi/3 \). The sum \( a + b = \pi/6 + \pi/3 = \pi/2 \).
Applying the property, replace \( x \) with \( \pi/2 - x \):
\[ I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos(\pi/2 - x)}}{\sqrt{\sin(\pi/2 - x)} + \sqrt{\cos(\pi/2 - x)}} dx \] \[ I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx \) ... (ii)
Add equations (i) and (ii):
\[ 2I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \] \[ 2I = \int_{\pi/6}^{\pi/3} 1 \, dx = [x]_{\pi/6}^{\pi/3} \] \[ 2I = \frac{\pi}{3} - \frac{\pi}{6} = \frac{2\pi - \pi}{6} = \frac{\pi}{6} \] \[ I = \frac{\pi}{12} \]
Step 3: Final Answer:
The value of the integral is \( \frac{\pi}{12} \).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Calculus
Let \[ f(t)=\int_{0}^{t} e^{x^2}\Big((1+2x^2)\sin x+x\cos x\Big)\,dx. \] Then the value of \(f(\pi)-f\!\left(\frac{\pi}{2}\right)\) is equal to:
JEE Main - 2026
Mathematics
Calculus
View Solution
The value of \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{12(3+[x])\,dx}{3+[\sin x]+[\cos x]} \] (where \([\,]\) denotes the greatest integer function) is:
JEE Main - 2026
Mathematics
Calculus
View Solution
Given \[ f(x)=\int \frac{dx}{x^{2/3}+2\sqrt{x}} \quad \text{and} \quad f(0)=-26+24\ln 2. \] If \(f(1)=A+B\ln 3\), then find \((A+B)\).
JEE Main - 2026
Mathematics
Calculus
View Solution
If \[ f(x)=1-2x+\int_{0}^{x} e^{x-t} f(t)\,dt \] and \[ g(x)=\int_{0}^{x} (f(t)+2)^{11}(t+12)^{17}(t-4)^4\,dt, \] If local minima and local maxima of \(g(x)\) occur at \(x=p\) and \(x=q\) respectively, find \(|p|+q\).
JEE Main - 2026
Mathematics
Calculus
View Solution
Consider two parabolas \(P_1,\ P_2\) and a line \(L\):
\[ P_1:\ y=4x^2,\qquad P_2:\ y=x^2+27,\qquad L:\ y=\alpha x \] If the area bounded by \(P_1\) and \(P_2\) is six times the area bounded by \(P_1\) and \(L\), find \(\alpha\).
JEE Main - 2026
Mathematics
Calculus
View Solution
View More Questions
Questions Asked in PSEB exam
If a die is tossed once, then the probability of getting an odd prime number is:
PSEB XII - 2025
Probability
View Solution
Prove that for any two non-zero vectors \( \mathbf{a} \) and \( \mathbf{b} \),
\[ |\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}| \]
Also, write the name of this inequality.
PSEB XII - 2025
Inequalities
View Solution
Adjacent sides of a parallelogram are given by
\[ \mathbf{a} = 6 \hat{i} - \hat{j} + 5 \hat{k}, \quad \mathbf{b} = \hat{i} + 5 \hat{j} - 2 \hat{k} \]
Find the area of the parallelogram.
PSEB XII - 2025
Geometry
View Solution
\( \frac{d}{dx} \left( \sin x^2 \right) = 2x \cos x^2 \)
PSEB XII - 2025
Inverse Trigonometric Functions
View Solution
If a matrix \( A \) is symmetric as well as skew-symmetric, then \( A = 0 \).
PSEB XII - 2025
Matrices
View Solution
View More Questions