Step 1: Formula for the area of the parallelogram.
The area \( A \) of a parallelogram with adjacent sides \( \mathbf{a} \) and \( \mathbf{b} \) is given by the magnitude of the cross product of the two vectors:
\[
A = |\mathbf{a} \times \mathbf{b}|
\]
Step 2: Finding the cross product.
We are given:
\[
\mathbf{a} = 6 \hat{i} - \hat{j} + 5 \hat{k}, \quad
\mathbf{b} = \hat{i} + 5 \hat{j} - 2 \hat{k}
\]
The cross product \( \mathbf{a} \times \mathbf{b} \) is calculated as the determinant:
\[
\mathbf{a} \times \mathbf{b} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
6 & -1 & 5 \\
1 & 5 & -2
\end{vmatrix}
\]
Expanding the determinant:
\[
\mathbf{a} \times \mathbf{b}
= \hat{i}
\begin{vmatrix}
-1 & 5 \\
5 & -2
\end{vmatrix}
- \hat{j}
\begin{vmatrix}
6 & 5 \\
1 & -2
\end{vmatrix}
+ \hat{k}
\begin{vmatrix}
6 & -1 \\
1 & 5
\end{vmatrix}
\]
Now, calculate each \( 2 \times 2 \) determinant:
\[
\begin{vmatrix}
-1 & 5 \\
5 & -2
\end{vmatrix}
= (-1)(-2) - (5)(5) = 2 - 25 = -23
\]
\[
\begin{vmatrix}
6 & 5 \\
1 & -2
\end{vmatrix}
= (6)(-2) - (5)(1) = -12 - 5 = -17
\]
\[
\begin{vmatrix}
6 & -1 \\
1 & 5
\end{vmatrix}
= (6)(5) - (-1)(1) = 30 + 1 = 31
\]
Step 3: Calculating the cross product.
Substituting these values:
\[
\mathbf{a} \times \mathbf{b} = -23 \hat{i} + 17 \hat{j} + 31 \hat{k}
\]
Step 4: Finding the magnitude of the cross product.
The magnitude is:
\[
|\mathbf{a} \times \mathbf{b}| = \sqrt{(-23)^2 + 17^2 + 31^2}
\]
\[
|\mathbf{a} \times \mathbf{b}| = \sqrt{529 + 289 + 961} = \sqrt{1779}
\]
Thus, the area of the parallelogram is:
\[
A = \sqrt{1779} \approx 42.2 \, \text{square units}
\]
Step 5: Conclusion.
Thus, the area of the parallelogram is approximately \( 42.2 \, \text{square units} \).