Consider two parabolas \(P_1,\ P_2\) and a line \(L\):
\[
P_1:\ y=4x^2,\qquad
P_2:\ y=x^2+27,\qquad
L:\ y=\alpha x
\]
If the area bounded by \(P_1\) and \(P_2\) is six times the area bounded by \(P_1\) and \(L\), find \(\alpha\).
Show Hint
For area comparison problems,
first compute both areas symbolically, then apply the given ratio to solve for the parameter.
Step 1: Area between the two parabolas
Points of intersection of \(P_1\) and \(P_2\):
\[
4x^2=x^2+27 \Rightarrow 3x^2=27 \Rightarrow x=\pm 3
\]
Area \(A_1\):
\[
A_1=\int_{-3}^{3}\bigl[(x^2+27)-4x^2\bigr]dx
=\int_{-3}^{3}(27-3x^2)\,dx
\]
\[
A_1=2\int_{0}^{3}(27-3x^2)\,dx
=2\left[27x-x^3\right]_{0}^{3}
=2(81-27)=108
\]
Step 2: Area between \(P_1\) and the line \(L\)
Intersection of \(y=4x^2\) and \(y=\alpha x\):
\[
4x^2=\alpha x \Rightarrow x(4x-\alpha)=0
\]
So,
\[
x=0,\quad x=\frac{\alpha}{4}
\]
Area \(A_2\):
\[
A_2=\int_{0}^{\alpha/4}\bigl(\alpha x-4x^2\bigr)\,dx
\]
\[
A_2=\left[\frac{\alpha x^2}{2}-\frac{4x^3}{3}\right]_{0}^{\alpha/4}
=\frac{\alpha^3}{32}-\frac{\alpha^3}{48}
=\frac{\alpha^3}{96}
\]
Step 3: Use the given condition
Given:
\[
A_1=6A_2
\]
\[
108=6\cdot\frac{\alpha^3}{96}
\Rightarrow 108=\frac{\alpha^3}{16}
\]
\[
\alpha^3=1728 \Rightarrow \alpha=12
\]
Final Answer:
\[
\boxed{12}
\]