Step 1: Solve for \(f(x)\)
Differentiate the given equation:
\[
f(x)=1-2x+\int_{0}^{x} e^{x-t} f(t)\,dt
\]
\[
\Rightarrow f'(x)=-2+\int_{0}^{x} e^{x-t} f(t)\,dt + f(x)
\]
Using the original equation:
\[
\int_{0}^{x} e^{x-t} f(t)\,dt = f(x)-1+2x
\]
\[
\Rightarrow f'(x)=-2+f(x)-1+2x+f(x)
\]
\[
f'(x)-2f(x)=2x-3
\]
This is a linear differential equation.
Solving, we obtain:
\[
f(x)=x-1
\]
Step 2: Differentiate \(g(x)\)
By Fundamental Theorem of Calculus:
\[
g'(x)=(f(x)+2)^{11}(x+12)^{17}(x-4)^4
\]
Substitute \(f(x)=x-1\):
\[
g'(x)=(x+1)^{11}(x+12)^{17}(x-4)^4
\]
Step 3: Critical points
\[
g'(x)=0 \Rightarrow x=-1,\,-12,\,4
\]
Multiplicity:
\(x=-1\): odd power (11) \(\Rightarrow\) sign change
\(x=-12\): odd power (17) \(\Rightarrow\) sign change
\(x=4\): even power (4) \(\Rightarrow\) no sign change
Step 4: Identify maxima and minima
At \(x=-12\): local maximum
At \(x=-1\): local minimum
At \(x=4\): point of inflection
Thus,
\[
p=-1,\quad q=12
\]
Step 5: Compute required value
\[
|p|+q = 1+12 = \boxed{15}
\]