>
PSEB XII
>
Mathematics
List of top Mathematics Questions asked in PSEB XII
If a die is tossed once, then the probability of getting an odd prime number is:
PSEB XII - 2025
PSEB XII
Mathematics
Probability
Prove that for any two non-zero vectors \( \mathbf{a} \) and \( \mathbf{b} \),
\[ |\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}| \]
Also, write the name of this inequality.
PSEB XII - 2025
PSEB XII
Mathematics
Inequalities
Adjacent sides of a parallelogram are given by
\[ \mathbf{a} = 6 \hat{i} - \hat{j} + 5 \hat{k}, \quad \mathbf{b} = \hat{i} + 5 \hat{j} - 2 \hat{k} \]
Find the area of the parallelogram.
PSEB XII - 2025
PSEB XII
Mathematics
Geometry
\( \frac{d}{dx} \left( \sin x^2 \right) = 2x \cos x^2 \)
PSEB XII - 2025
PSEB XII
Mathematics
Inverse Trigonometric Functions
If a matrix \( A \) is symmetric as well as skew-symmetric, then \( A = 0 \).
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
Find the area of the region bounded by \( y^2 = 4x \), \( x = 1 \), \( x = 4 \), and the x-axis in the first quadrant.
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
Evaluate
\[ \int_0^{\frac{\pi}{2}} \log \sin x \, dx \]
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
Solve by Matrix Method
Given:
\[ x + 2y - 3z = 6, \quad 3x + 2y - 2z = 3, \quad 2x - y + z = 2 \]
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
Divide a number 15 into two parts such that the square of one multiplied with the cube of the other is a maximum.
PSEB XII - 2025
PSEB XII
Mathematics
Optimization
Express the matrix
\[ \begin{bmatrix} 7 & 0 & 3 \\ 2 & 4 & 1 \\ -5 & 6 & 8 \end{bmatrix} \]
as the sum of symmetric and skew-symmetric matrices.
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
If
\[ A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}, \]
prove that
\[ A^2 - 4A - 5I = 0. \]
Hence, find
\( A^{-1} \).
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
Discuss the continuity of \( f(x) \) at \( x = 0 \), where
Given:
\[ f(x) = \begin{cases} \dfrac{1 - \cos(4x)}{x^2}, & x \neq 0 \\[6pt] 8, & x = 0 \end{cases} \]
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
Find \( (AB)^{-1} \), if
\[ A = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \]
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
Verify \( (AB)^T = B^T A^T \).
Given:
\[ A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix} \]
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
If \( A \) is an invertible matrix of order \( n \), then \( \text{adj} (\text{adj} A) = |A|^{n-2} A \).
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
A 2x2 matrix whose elements are \( a_{ij} = \frac{(t + n)^2}{2} \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
The adjoint of the matrix
\[ \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \]
is:
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
When \( x = at^2 \), \( y = 2at \), then \( \frac{dy}{dx} \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Differentiation
\( \int \frac{(\log x)^2}{x} \, dx \) equals:
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
Derivative of \( \left( \sin^{-1}x + \cos^{-1}x \right) \) with respect to \( x \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
The principal value of \( \tan^{-1}(\sqrt{3}) \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Inverse Trigonometric Functions
If \( \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \), then \( x \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Inverse Trigonometric Functions
If
\[ \begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix} \]
then \( x \) is equal to:
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
If
\[ \begin{bmatrix} 1 & 4 \\ -3 & x \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 8 & -3 \end{bmatrix} \]
then the value of \( x \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
Prev
1
2
3
...
6
Next