Question:

Prove that for any two non-zero vectors \( \mathbf{a} \) and \( \mathbf{b} \), \[ |\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}| \] Also, write the name of this inequality.

Show Hint

The Triangle Inequality for vectors states that the magnitude of the sum of two vectors is less than or equal to the sum of their magnitudes.
Updated On: Feb 2, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Vector addition and magnitude. 
We are given two non-zero vectors \( \mathbf{a} \) and \( \mathbf{b} \), and we need to prove the inequality \( |\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}| \). 
This inequality is known as the **Triangle Inequality** for vectors. 
Step 2: Proof of the Triangle Inequality. 
We know that the square of the magnitude of a vector is equal to the dot product of the vector with itself. Therefore, we have: \[ |\mathbf{a} + \mathbf{b}|^2 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \] Expanding the dot product: \[ |\mathbf{a} + \mathbf{b}|^2 = \mathbf{a} \cdot \mathbf{a} + 2 \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} \] This simplifies to: \[ |\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + 2 \mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2 \] Step 3: Using the Cauchy-Schwarz inequality. 
From the Cauchy-Schwarz inequality, we know that: \[ \mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}| \] Thus: \[ |\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + 2 \mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2 \leq |\mathbf{a}|^2 + 2 |\mathbf{a}| |\mathbf{b}| + |\mathbf{b}|^2 \] Step 4: Taking square roots. 
Taking the square root of both sides, we get: \[ |\mathbf{a} + \mathbf{b}| \leq \sqrt{|\mathbf{a}|^2 + 2 |\mathbf{a}| |\mathbf{b}| + |\mathbf{b}|^2} \] Since \( \sqrt{|\mathbf{a}|^2 + 2 |\mathbf{a}| |\mathbf{b}| + |\mathbf{b}|^2} = |\mathbf{a}| + |\mathbf{b}| \), we have: \[ |\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}| \] Step 5: Conclusion. 
Thus, the inequality is proven, and it is known as the **Triangle Inequality** for vectors.

Was this answer helpful?
0
0