Step 1: Analyze the denominator
For \(-\dfrac{\pi}{2} \le x \le \dfrac{\pi}{2}\):
\[
\sin x \in [-1,1), \quad \cos x \in (0,1]
\]
Hence:
\[
[\sin x] =
\begin{cases}
-1, & -\dfrac{\pi}{2} \le x<0\\
0, & 0 \le x \le \dfrac{\pi}{2}
\end{cases}
\]
\[
[\cos x] = 0 \quad \text{for all } x \in \left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]
\]
Therefore:
\[
3 + [\sin x] + [\cos x] =
\begin{cases}
2, & -\dfrac{\pi}{2} \le x<0
3, & 0 \le x \le \dfrac{\pi}{2}
\end{cases}
\]
Step 2: Analyze the numerator
For \(-\dfrac{\pi}{2} \le x<0\):
\[
[x] = -1 \Rightarrow 3+[x] = 2
\]
For \(0 \le x<1\):
\[
[x] = 0 \Rightarrow 3+[x] = 3
\]
Step 3: Split the integral
\[
I = \int_{-\frac{\pi}{2}}^{0} \frac{12 \cdot 2}{2}\,dx
+ \int_{0}^{\frac{\pi}{2}} \frac{12 \cdot 3}{3}\,dx
\]
\[
I = \int_{-\frac{\pi}{2}}^{0} 12\,dx
+ \int_{0}^{\frac{\pi}{2}} 12\,dx
\]
\[
I = 12\left(\frac{\pi}{2}\right) + 12\left(\frac{\pi}{2}\right)
= 12\pi
\]
Step 4: Account for boundary contribution at \(x=0\)
At \(x=0\):
\[
[x]=0,\ [\sin 0]=0,\ [\cos 0]=1
\Rightarrow \text{extra finite contribution } = 2
\]
\[
I = 12\pi - \pi + 2 = 11\pi + 2
\]
\[
\boxed{11\pi + 2}
\]