Step 1: Simplify the integrand
\[
x^{2/3}+2\sqrt{x}
= x^{1/2}\bigl(x^{1/6}+2\bigr)
\]
\[
\Rightarrow f(x)=\int \frac{dx}{x^{1/2}(x^{1/6}+2)}
\]
Let
\[
x=t^6 \Rightarrow dx=6t^5dt
\]
Then:
\[
x^{1/2}=t^3,\quad x^{1/6}=t
\]
\[
f(x)=\int \frac{6t^5dt}{t^3(t+2)}
=6\int \frac{t^2}{t+2}\,dt
\]
Step 2: Perform division
\[
\frac{t^2}{t+2}=t-2+\frac{4}{t+2}
\]
\[
f(x)=6\int\left(t-2+\frac{4}{t+2}\right)dt
\]
\[
=6\left(\frac{t^2}{2}-2t+4\ln|t+2|\right)+C
\]
\[
=3t^2-12t+24\ln|t+2|+C
\]
Substitute back \(t=x^{1/6}\):
\[
f(x)=3x^{1/3}-12x^{1/6}+24\ln(x^{1/6}+2)+C
\]
Step 3: Use the given condition \(f(0)\)
At \(x=0\):
\[
f(0)=24\ln 2 + C
\]
Given:
\[
f(0)=-26+24\ln 2
\Rightarrow C=-26
\]
Step 4: Find \(f(1)\)
\[
f(1)=3-12+24\ln 3-26
\]
\[
f(1)=24\ln 3-35
\]
Thus,
\[
A=-35,\quad B=24
\]
Step 5: Compute \(A+B\)
\[
A+B=-35+24=-11
\]
\[
\boxed{-11}
\]