Question:

\( \int \frac{(\log x)^2}{x} \, dx \) equals:

Show Hint

For integrals involving logarithms, use substitution \( u = \log x \) to simplify the integral.
Updated On: Feb 2, 2026
  • \( \frac{1}{x} + C \)
  • \( \log x + C \)
  • \( \frac{(\log x)^2}{2} + C \)
  • \( \frac{(\log x)^3}{3} + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Simplifying the integral. 
We are given the integral: \[ I = \int \frac{(\log x)^2}{x} \, dx \] This is a standard integral that can be solved by substitution. 
Step 2: Substitution. 
Let \( u = \log x \), so that \( du = \frac{1}{x} dx \). The integral becomes: \[ I = \int u^2 \, du \] Step 3: Integrating. 
Now, integrate with respect to \( u \): \[ I = \frac{u^3}{3} + C = \frac{(\log x)^3}{3} + C \] Step 4: Conclusion. 
Thus, the integral is \( \frac{(\log x)^3}{3} + C \), corresponding to option (d).

Was this answer helpful?
0
0