Step 1: Key Formula or Approach:
The integral \( \int \frac{1}{1+x^2} dx \) is a standard integral resulting in \( \tan^{-1} x \). Step 2: Detailed Explanation:
Using the fundamental theorem of calculus:
\[ \int_0^1 \frac{1}{1+x^2} dx = [\tan^{-1} x]_0^1 \]
Evaluate at the upper limit: \( \tan^{-1}(1) = \frac{\pi}{4} \).
Evaluate at the lower limit: \( \tan^{-1}(0) = 0 \).
Subtracting the values:
\[ \frac{\pi}{4} - 0 = \frac{\pi}{4} \]
Step 3: Final Answer:
The integral evaluates to \( \frac{\pi}{4} \).