
Here, \(R_2\), \(R_3\), and \(R_4\) are in parallel. The equivalent resistance of these resistors is given by:
\[ \frac{1}{R_{234}} = \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{8} + \frac{1}{4} + \frac{1}{8} \]
\[ R_{234} = 2 \, \Omega \]
This resistance is in series with \(R_1\), so the total equivalent resistance is:
\[ R_{\text{total}} = R_1 + R_{234} = 10 \, \Omega + 2 \, \Omega = 12 \, \Omega \]
The current supplied by the battery is:
\[ I = \frac{V}{R_{\text{total}}} = \frac{12 \, V}{12 \, \Omega} = 1 \, \text{A} \]

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.