The force between two charges is given by Coulomb's law: \[ F = \frac{k q_1 q_2}{r^2}, \] where \( F \) is the force, \( k \) is Coulomb's constant, \( q_1 \) and \( q_2 \) are the magnitudes of the charges, and \( r \) is the distance between them. If the distance \( r \) is doubled, the new distance becomes \( 2r \). The new force \( F' \) is: \[ F' = \frac{k q_1 q_2}{(2r)^2} = \frac{k q_1 q_2}{4r^2} = \frac{F}{4}. \] Thus, the force decreases by a factor of 4 when the distance is doubled. Hence, the correct answer is \( \boxed{(1)} \).
A(g) $ \rightarrow $ B(g) + C(g) is a first order reaction.
The reaction was started with reactant A only. Which of the following expression is correct for rate constant k ?
$\mathrm{KMnO}_{4}$ acts as an oxidising agent in acidic medium. ' X ' is the difference between the oxidation states of Mn in reactant and product. ' Y ' is the number of ' d ' electrons present in the brown red precipitate formed at the end of the acetate ion test with neutral ferric chloride. The value of $\mathrm{X}+\mathrm{Y}$ is _______ .