The force between two charges is given by Coulomb's law: \[ F = \frac{k q_1 q_2}{r^2}, \] where \( F \) is the force, \( k \) is Coulomb's constant, \( q_1 \) and \( q_2 \) are the magnitudes of the charges, and \( r \) is the distance between them. If the distance \( r \) is doubled, the new distance becomes \( 2r \). The new force \( F' \) is: \[ F' = \frac{k q_1 q_2}{(2r)^2} = \frac{k q_1 q_2}{4r^2} = \frac{F}{4}. \] Thus, the force decreases by a factor of 4 when the distance is doubled. Hence, the correct answer is \( \boxed{(1)} \).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.