The induced emf in a coil is given by:\[(\text{Emf})_{\text{induced}} = -L \frac{di}{dt}\]
In terms of magnitude:
\[|\text{Emf}_{\text{induced}}| = \left| L \frac{di}{dt} \right|\]
Given:
\[|\text{Emf}_{\text{induced}}| = 0.1 \, \text{V}\]
\[\frac{di}{dt} = \frac{2 - (-2)}{0.2} = \frac{4}{0.2} = 20 \, \text{A/s}\]
Now, solve for \( L \):
\[0.1 = L \times 20\]
\[L = \frac{0.1}{20} = 0.005 \, \text{H} = 5 \, \text{mH}\]
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]