The emf \( \varepsilon \) induced in the circuit is given by Faraday’s law:
\[ \varepsilon = -\frac{d\Phi}{dt}. \]Calculate \( \frac{d\Phi}{dt} \):
\[ \frac{d\Phi}{dt} = 10t - 36. \]At \( t = 2 \, \text{s} \):
\[ \varepsilon = -(10 \cdot 2 - 36) = -(-16) = 16 \, \text{V}. \]The induced current \( i \) in the circuit is:
\[ i = \frac{\varepsilon}{R} = \frac{16}{8} = 2 \, \text{A}. \]Thus, the induced current at \( t = 2 \, \text{s} \) is:
\[ 2 \, \text{A}. \]Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).