We are given that \( z = x - iy \) and \( z^{1/3} = p + iq \). Let's first write down the equation in terms of complex numbers: \[ z = (p + iq)^3 \] Expanding \( (p + iq)^3 \) using the binomial theorem: \[ (p + iq)^3 = p^3 + 3p^2(iq) + 3p(iq)^2 + (iq)^3 \] Since \( i^2 = -1 \) and \( i^3 = -i \), we get: \[ (p + iq)^3 = p^3 + 3p^2(iq) + 3p(-q^2) - iq^3 \] This simplifies to: \[ (p + iq)^3 = p^3 - 3pq^2 + i(3p^2q - q^3) \] So, comparing the real and imaginary parts with \( z = x - iy \), we have the equations: \[ x = p^3 - 3pq^2 \quad \text{(real part)} \] \[ y = -(3p^2q - q^3) \quad \text{(imaginary part)} \] Step 1: Express \( \frac{x}{p} + \frac{y}{q} \) Now, substitute the expressions for \( x \) and \( y \) into \( \frac{x}{p} + \frac{y}{q} \): \[ \frac{x}{p} + \frac{y}{q} = \frac{p^3 - 3pq^2}{p} + \frac{-(3p^2q - q^3)}{q} \] Simplifying each term: \[ \frac{x}{p} + \frac{y}{q} = p^2 - 3q^2 - (3p^2 - q^2) \] \[ = p^2 - 3q^2 - 3p^2 + q^2 \] \[ = -2p^2 - 2q^2 \] \[ = -2(p^2 + q^2) \] Step 2: Simplifying the expression Now, we need to evaluate the full expression: \[ \frac{\left( \frac{x}{p} + \frac{y}{q} \right)}{p^2 + q^2} = \frac{-2(p^2 + q^2)}{p^2 + q^2} \] This simplifies to: \[ -2 \]
\[ \boxed{-2} \]
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is: