-4
3
2
-1
We are given:
\(z = \frac{1}{2} - 2i\)
and\(|z + 1| = \alpha z + \beta(1 + i)\)
First, we calculate \( |z + 1| \):
\(|z + 1| = \left| \frac{1}{2} - 2i + 1 \right| = \left| \frac{3}{2} - 2i \right|\)
Using the modulus formula for complex numbers:
\(\left| \frac{3}{2} - 2i \right| = \sqrt{\left( \frac{3}{2} \right)^2 + (-2)^2} = \sqrt{\frac{9}{4} + 4} = \sqrt{\frac{9}{4} + \frac{16}{4}} = \sqrt{\frac{25}{4}} = \frac{5}{2}\)
Now, substituting into the equation:
\(\frac{5}{2} = \alpha \left( \frac{1}{2} - 2i \right) + \beta(1 + i)\)
Expanding both sides:
\(\frac{5}{2} = \frac{\alpha}{2} - 2\alpha i + \beta + \beta i\)
Equating real and imaginary parts:
Real part: \(\frac{\alpha}{2} + \beta = \frac{5}{2}\)
Imaginary part: \(-2\alpha + \beta = 0\)
From the imaginary part:
\(\beta = 2\alpha\)
Substituting into the real part:
\(\frac{\alpha}{2} + 2\alpha = \frac{5}{2}\)
\(\frac{5\alpha}{2} = \frac{5}{2}\)
\(\alpha = 1\)
Substituting \(\alpha = 1\) into \(\beta = 2\alpha\):
\(\beta = 2\)
Thus:
\(\alpha + \beta = 1 + 2 = 3\)
So, the correct answer is: \(\boxed{3}\)
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
Let A be a 3 Γ 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: