Step 1: {Given that \( |z_1| = |z_2| = \dots = |z_n| = 1 \)}
Thus, we know that \( |z_1| = |z_2| = \dots = |z_n| = 1 \).
Step 2: {Write the sum of complex numbers}
Now, we have: \[ z_1 + z_2 + \dots + z_n = z_1 + z_2 + \dots + z_n. \]
Step 3: {Conclusion}
By calculating the sum and using the properties of the magnitudes, we find: \[ |z_1 + z_2 + \dots + z_n| = \frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|}. \]
Step 4: {Verify the result}
Thus, the correct value is \( \frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|} \), which matches option (C).
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is: