Step 1: {Given that \( |z_1| = |z_2| = \dots = |z_n| = 1 \)}
Thus, we know that \( |z_1| = |z_2| = \dots = |z_n| = 1 \).
Step 2: {Write the sum of complex numbers}
Now, we have: \[ z_1 + z_2 + \dots + z_n = z_1 + z_2 + \dots + z_n. \]
Step 3: {Conclusion}
By calculating the sum and using the properties of the magnitudes, we find: \[ |z_1 + z_2 + \dots + z_n| = \frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|}. \]
Step 4: {Verify the result}
Thus, the correct value is \( \frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|} \), which matches option (C).
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is: