Step 1: {Given that \( |z_1| = |z_2| = \dots = |z_n| = 1 \)}
Thus, we know that \( |z_1| = |z_2| = \dots = |z_n| = 1 \).
Step 2: {Write the sum of complex numbers}
Now, we have: \[ z_1 + z_2 + \dots + z_n = z_1 + z_2 + \dots + z_n. \]
Step 3: {Conclusion}
By calculating the sum and using the properties of the magnitudes, we find: \[ |z_1 + z_2 + \dots + z_n| = \frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|}. \]
Step 4: {Verify the result}
Thus, the correct value is \( \frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|} \), which matches option (C).
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to