Step 1: Differentiate using quotient rule
Given function:
\[
y = \frac{\tan x \cos^{-1}x}{\sqrt{1 - x^2}}
\]
Let \( u = \tan x \cos^{-1}x \) and \( v = \sqrt{1 - x^2} \).
Using the quotient rule:
\[
\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}
\]
Step 2: Compute derivatives
For \( u = \tan x \cos^{-1}x \), use the product rule:
\[
\frac{du}{dx} = \sec^2 x \cos^{-1}x + \tan x \left(\frac{-1}{\sqrt{1 - x^2}}\right).
\]
For \( v = \sqrt{1 - x^2} \),
\[
\frac{dv}{dx} = \frac{-x}{\sqrt{1 - x^2}}.
\]
Step 3: Evaluate at \( x = 0 \)
\[
\frac{dy}{dx} \bigg|_{x=0} = \frac{\frac{\pi}{2} (1) - 0}{1} = \frac{\pi}{2}.
\]
Thus, the correct answer is \( \boxed{\frac{\pi}{2}} \).