Step 1: Take the logarithm
\[
\ln y = \ln \left( \frac{(\sin x)^{\sin x}}{(\cos x)^{\sin x}} \right).
\]
Using logarithm properties:
\[
\ln y = \sin x \ln \sin x - \sin x \ln \cos x.
\]
Step 2: Differentiate both sides
Using the derivative rule:
\[
\frac{1}{y} \frac{dy}{dx} = \cos x \ln \sin x + \sin x \frac{\cos x}{\sin x} - \cos x \ln \cos x - \sin x \frac{\sin x}{\cos x}.
\]
Simplifying:
\[
\frac{1}{y} \frac{dy}{dx} = \cos x (\ln \sin x - \ln \cos x) + \sin x \left(\frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} \right).
\]
Step 3: Evaluate at \( x = \frac{\pi}{4} \)
\[
\ln \sin \frac{\pi}{4} = \ln \cos \frac{\pi}{4} = \ln \frac{\sqrt{2}}{2}.
\]
\[
\cos \frac{\pi}{4} (\ln \sin \frac{\pi}{4} - \ln \cos \frac{\pi}{4}) + \sin \frac{\pi}{4} (0) = \sqrt{2} (0).
\]
Thus,
\[
\frac{dy}{dx} = \sqrt{2}.
\]
So, the correct answer is \( \boxed{\sqrt{2}} \).