Step 1: Square both sides of the given equation.
The magnitude of a vector is always non-negative, so we can square both sides without loss of information.
\[ |\vec{A}+\vec{B}|^2 = |\vec{A}-\vec{B}|^2 \]
Step 2: Express the square of the magnitude using the dot product.
Recall that for any vector \(\vec{V}\), \(|\vec{V}|^2 = \vec{V} \cdot \vec{V}\).
\[ (\vec{A}+\vec{B}) \cdot (\vec{A}+\vec{B}) = (\vec{A}-\vec{B}) \cdot (\vec{A}-\vec{B}) \]
Step 3: Expand the dot products.
\[ \vec{A}\cdot\vec{A} + \vec{A}\cdot\vec{B} + \vec{B}\cdot\vec{A} + \vec{B}\cdot\vec{B} = \vec{A}\cdot\vec{A} - \vec{A}\cdot\vec{B} - \vec{B}\cdot\vec{A} + \vec{B}\cdot\vec{B} \]
Since \(\vec{A}\cdot\vec{A} = |\vec{A}|^2\) and the dot product is commutative (\(\vec{A}\cdot\vec{B} = \vec{B}\cdot\vec{A}\)):
\[ |\vec{A}|^2 + 2(\vec{A}\cdot\vec{B}) + |\vec{B}|^2 = |\vec{A}|^2 - 2(\vec{A}\cdot\vec{B}) + |\vec{B}|^2 \]
Step 4: Simplify the equation to find the condition on the dot product.
Canceling the \(|\vec{A}|^2\) and \(|\vec{B}|^2\) terms from both sides:
\[ 2(\vec{A}\cdot\vec{B}) = -2(\vec{A}\cdot\vec{B}) \]
\[ 4(\vec{A}\cdot\vec{B}) = 0 \]
\[ \vec{A}\cdot\vec{B} = 0 \]
Step 5: Interpret the result.
The dot product of two non-zero vectors is zero if and only if they are orthogonal (perpendicular). The angle between them is 90 degrees, or \(\pi/2\) radians.