Question:

If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:

\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]

then the value of

\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]

is equal to:

Show Hint

When solving problems involving vector magnitudes, break down the equations into manageable parts by substituting for magnitudes and using basic algebraic techniques.
Updated On: Apr 8, 2025
  • \( 1 + \sqrt{2} \)
  • \( 2 + 4\sqrt{2} \)
  • \( 1 + 2\sqrt{2} \)
  • \( 3 + 2\sqrt{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


We are given the equation: \[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1. \] Let \( x = |\mathbf{a} + \mathbf{b}| \) and \( y = |\mathbf{a} - \mathbf{b}| \). The equation becomes: \[ \frac{x + y}{x - y} = \sqrt{2} + 1. \] Now, solve for \( x \) and \( y \) by cross-multiplying: \[ (x + y) = (\sqrt{2} + 1)(x - y). \] Expanding the right-hand side: \[ x + y = (\sqrt{2} + 1)(x - y) = (\sqrt{2} + 1)x - (\sqrt{2} + 1)y. \] Now, collect like terms: \[ x + y + (\sqrt{2} + 1)y = (\sqrt{2} + 1)x. \] Simplifying: \[ x + y(1 + \sqrt{2}) = (\sqrt{2} + 1)x. \] Now, solve for \( \frac{x}{y} \) to find the value of \( |\mathbf{a} + \mathbf{b}| / |\mathbf{a} - \mathbf{b}| \). This results in: \[ \frac{x}{y} = 1 + \sqrt{2}. \] Thus, the correct answer is \( 1 + \sqrt{2} \), which corresponds to option (1).
Was this answer helpful?
0
0

Top Questions on Geometry and Vectors

View More Questions